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Time series in astronomy

Periodic phenomena: binary orbits (stars, extrasolar
planets); stellar rotation (radio pulsars); pulsation
(helioseismology, Cepheids)

Stochastic phenomena: accretion (CVs, X-ray binaries,
Seyfert gals, quasars); scintillation (interplanetary &
interstellar media); jet variations (blazars)

Explosive phenomena: thermonuclear (novae, X-ray
bursts), magnetic reconnection (solar/stellar 
ares), star
death (supernovae, gamma-ray bursts)



Di�culties in astronomical time series

Gapped data streams:
Diurnal & monthly cycles; satellite orbital cycles;
telescope allocations

Heteroscedastic measurement errors:
Signal-to-noise ratio di�ers from point to point

Poisson processes:
Individual photon/particle events in high-energy
astronomy

Variety of temporal behaviors



Concepts of time series analysis

Stationarity The temporal behavior, whether deterministic (e.g. orbit) or
stochastic, is statistically unchanged by shifts in time. Types of
nonstationarity include:trends(secular changes in mean value),
heteroscedasticity(changes in variance), andchange points(di�erent
behaviors before and aftert0). GRS 1915 is very nonstationary.

Periodicity The measured levels repeat themselves deterministically
with one or more periods. The signal becomes concentrated infrequency
domain study:spectral analysis, harmonic analysis, Fourier analysis.
These methods classically use trigonometric sine and cosine functions,
but this is not required.



Autocorrelation The measured levels at timet0 depend on levels
measured at previous times. The autocorrelation can be deterministic
(trend or periodicity) or can include a stochastic component. For an
evenly spaced time series, theautocorrelation function (ACF)is the
fraction of the total variance due to correlated values at lag k time steps:

�̂ (k) = ACF (k) =

P n � k
t =1 (x t � �x)(x t + k � �x)

P n
t =1 (x t � �x)2 :

If the ACF has signi�cant signal at smallk, the time series has
short-term memory. If the signal extends to largek, it has long-term
memory. The latter includesred noiseor 1=f � -type processes that are
often seen in (astro)physical systems. A stochastic time series with
insigni�cant ACF values at allk exhibitswhite noise, often assumed to
have a Gaussian (normal) distribution.



Other important concepts Nonlinear(in the parameters) time series
(including chaoticsystems);multivariate time series (including
autoregressive with lags);time-frequencyanalysis (for nonstationary
periodic behaviors);waveletanalysis (for multiscale aperiodic variations);
state spacemodels (hierarchical deterministic + stochastic models with
MLE coe�cients updated by the Kalman �lter); unevenly-spacedtime
series (methods primarily developed by astronomers).



Nonparametric time domain methods

Autocorrelation function

This sample ACF is an estimator of the correlation between
the xt andxt � k in an evenly-spaced time series. For zero mean
and normal errors, the ACF is asymptotically normal with
varianceV ar�̂ = [ n � k]=[n(n + 2)] . This allow probability
statements to be made about the ACF.

The partial autocorrelation function (PACF) estimates the
correlation with the linear e�ect of the intermediate
observations,xt � 1; :::; xt � k+1 , removed. Calculate with the
Durbin-Levinson algorithm based on an autoregressive model.



Density estimation

Standard methods of density estimation are often used on time
series: kernel density estimation, local regressions, etc.



Ginga observations of X-ray binary GX 5-1

GX 5-1 is a binary star system with gas from a normal companion
accreting onto a neutron star. Highly variable X-rays are produced in the
inner accretion disk. X-ray binary time series often show `red noise' and
`quasi-periodic oscillations', probably from inhomogeneities in the disk.
We plot below the �rst 5000 of 65,536 count rates from Ginga satellite
observations during the 1980s.

R script:
gx=scan("GX.dat")
t=1:5000
plot(t,gx[1:5000],pch=20)





Kernel smoothing of GX 5+1 time series
Normal kernel, bandwidth = 7 bins
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Autocorrelation functions

acf(GX, lwd=3) pacf(GX, lwd=3)



Parametric time domain methods: ARMA models

Autoregressive moving average model

Very common model in human and engineering sciences,
designed for aperiodic autocorrelated time series (e.g. 1/f-type
`red noise'). Easily �t by maximum-likelihood. Disadvantage:
parameter values are di�cult to interpret physically.

AR (p) model xt = � 1xt � 1 + � 2xt � 2 + : : : + � pxt � p + wt

MA (q) model xt = wt + � 1wt � 1 + : : : + � qwt � q

The AR model is recursive with memory of past values. The
MA model is the moving average across a window of size
q+ 1. ARMA(p,q) combines these two characteristics.



Many extensions to ARMA models:

VAR (vector autoregressive)

ARFIMA (ARIMA with long-memory component)

GARCH (generalized autoregressive conditional
heteroscedastic for stochastic volatility)

Dozens of variants from econometrics: see
ftp://ftp.econ.au.dk/creates/rp/08/rp08 49.pdf.



GX 5+1 modeling

ar(x = GX, method = "mle")
Coe�cients:
1 2 3 4 5 6 7 8
0.21 0.01 0.00 0.07 0.11 0.05 -0.02 -0.03

arima(x = GX, order = c(6, 2, 2))
Coe�cients:
ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2
0.12 -0.13 -0.13 0.01 0.09 0.03 -1.93 0.93
Coe� s.e. = 0.004 � 2 = 102 log L = -244446.5
AIC = 488911.1



Although the scatter is reduced by a factor of 30, the chosen model is

not adequate: Ljung-Box test shows signi�cant correlationin the

residuals. Use AIC for model selection.



Autoregressive modeling of Kepler stellar
photometry

NASA's Kepler mission obtained nearly-continuous high-precision
photometry of 190,000 stars over a 4 year period in order to detect faint
transits of orbiting planets. A principal problem is that many stars show
intrinsic variability with amplitudes� 0.01-1%, reducing sensitivity to
planet transits. Penn State graduate student Gabriel Caceres and
colleagues are using ARMA modeling techniques to reduce stellar
autocorrelated `noise' and recover transit `signals'. Stellar variability is
typically reduced by factor of 10-100 using di�erencing where x i is
replaced byx i � x i � 1 (AR(1)=1.0,), More elaborate ARMA, ARFIMA
and GARCH models reduce the noise further.

Four examples from random Kepler stars follow in sequence ofstrong to
weak stellar variability. The top plot shows the 4-year lightcurve, after
normalization of instrumental e�ects. The middle panels show the light
curve after di�erencing and outlier rejection. The bottom panel shows
the e�ect of ARMA modeling of the di�erenced lightcurve.











State space models

Often we cannot directly detectxt , the system variable, but
rather indirectly with an observed variableyt . This commonly
occurs in astronomy wherey is observed with measurement
error (errors-in-variable or EIV model). For AR(1) and errors
vt = N (�; � ) andwt = N (�; � ),

yt = Ax t + vt xt = � 1xt � 1 + wt

This is astate space modelwhere the goal is to estimatext

from yt , p(xt jyt ; : : : ; y1). Parameters are estimated by
maximum likelihood, Bayesian estimation, Kalman �ltering, or
prediction. Extended state space models: non-stationarity,
hidden Markov chains, etc. MCMC evaluation of nonlinear and
non-normal (e.g. Poisson) models



Fast Fourier Transform of the GX 5-1 time series reveals the
`red noise' (high spectral amplitude at small frequencies),the
QPO (broadened spectral peak around 0.35), and white noise.

f = 0:32768/65536
I = (4/65536)*abs(�t(gx)/sqrt(65536))^ 2
plot(f[2:60000],I[2:60000],type="l",xlab="Frequency ")



Smoothed and tapered Fourier spectrum
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Series: x
Smoothed Periodogram

bandwidth = 7.54e-05

postscript(�le=" ~/Desktop/GX sm tap �t.eps")
k = kernel("modi�ed.daniell", c(7,7))
spec = spectrum(gx, k, method="pgram", taper=0.3, fast=TR UE, detrend=TRUE, log="no")
dev.o�()



Nonstationary time series

Non-stationary periodic behaviors can be studied using
time-frequency Fourier analysis . Here the spectral density
is calculated in time bins and displayed in a 3-dimensional plot.

Wavelets are now well-developed for non-stationary time
series, either periodic or aperiodic. Here the data are
transformed using a family of non-sinusoidal orthogonal basis
functions with 
exibility both in amplitude and temporal scale.
The resulting wavelet decomposition is a 3-dimensional plot
showing the amplitude of the signal at each scale at each
time. Wavelet analysis is often very useful for noise
threshholding and low-pass �ltering.



Astronomers' periodicity searching of irregularly
spaced time series

Several non-Fourier periodograms have been developed by
astronomers confronting unevenly sampled data. Most are
nonparametric, without assumption of a sinusoidal shape to
the periodic variation, particularly adapted to eclipses or other
short-duty cycle variations. Two important methods are:

Phase dispersion minimization Data are folded modulo many periods,
grouped into phase bins, and intra-bin variance is comparedto inter-bin
variance using� 2 (Stellingwerf 1972). Very widely used in variable star
research, although there is di�culty in deciding which periods to search.

Minimum string length by Dworetsky 1983. Similar to PDM but
simpler: plots length of string connecting datapoints for each period.
Related to the Durbin-Watson roughness statistic in econometrics.



Other methods

Rayleigh andZ 2
n tests (Leahy et al. 1983) for periodicity

search Poisson distributed photon arrival events. Equivalent to
Fourier spectrum at high count rates.

Bayesian periodicity search (Gregory & Loredo 1992)
Designed for non-sinusoidal periodic shapes observed with
Poisson events. Calculates odds ratio for periodic over
constant model and most probable shape.



Conclusions on spectral analysis

For challenging problems, smoothing, multitapering, linear
�ltering, (repeated) pre-whitening and Lomb-Scargle can be
used together. Beware that aperiodic but autoregressive
processes produce peaks in the spectral densities. Harmonic
analysis is a complicated `art' rather than a straightforward
`procedure'.

It is extremely di�cult to derive the signi�cance of a weak
periodicity from harmonic analysis. Do not believe analytical
estimates (e.g. exponential probability), as they rarely apply to
real data. It is essential to make simulations, typically
permuting or bootstrapping the data keeping the observing
times �xed. Simulations of the �nal model with the
observation times is also advised.



Wavelet analysis

Non-stationary periodic behaviors can be studied using
time-frequency Fourier analysis . Here the spectral density
is calculated in time bins and displayed in a 3-dimensional plot.

Wavelets are now well-developed for non-stationary time
series, either periodic or aperiodic. Here the data are
transformed using a family of non-sinusoidal orthogonal basis
functions with 
exibility both in amplitude and temporal scale.
The resulting wavelet decomposition is a 3-dimensional plot
showing the amplitude of the signal at each scale at each
time. Wavelet analysis is often very useful for noise
threshholding and low-pass �ltering.



Bayesian Blocks

Bayesian Blocks constructs a segmented piecewise-constant
(histogram) model for event, integer (binned), or real
measurements as a function of time (Scargle 1998, Scargle et
al. 2013). An example ofchange point analysiswhere both
the number and location of change points is unknown. Very
useful in X-ray and gamma-ray astronomy.
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