Laws of Probability, Bayes’ theorem, and the Central Limit Theorem
2015 Penn State Astrostatistics Summer School

David Hunter
Department of Statistics
Penn State University

Adapted from notes prepared by Rahul Roy and RL Karandikar,
Indian Statistical Institute, Delhi

Eleventh Penn State Astrostatistics Summer School
June, 2015
Outline

Why study probability?
Mathematical formalization
Conditional probability
Discrete random variables
Continuous distributions
Limit theorems
Outline

Why study probability?

Mathematical formalization

Conditional probability

Discrete random variables

Continuous distributions

Limit theorems
Do Random phenomena exist in Nature?

- Is a coin flip random? Not really, given enough information. But modeling the outcome as random gives a parsimonious representation of reality.

- Which way will an electron spin? Is it random? We can’t exclude the possibility of a new theory being invented someday that would explain the spin, but modeling it as random is good enough.

Randomness is not total unpredictability; we may quantify that which is unpredictable.
Do Random phenomena exist in Nature?

If Mathematics and Probability theory were as well understood several centuries ago as they are today but the planetary motion was not understood, perhaps people would have modeled the occurrence of a Solar eclipse as a random event and assigned a probability based on empirical occurrence.

Subsequently, someone would have revised the model, observing that a solar eclipse occurs only on a new moon day. After more time, the phenomenon would be completely understood and the model changed from a stochastic, or random, model to a deterministic one.
Do Random phenomena exist in Nature?

Thus, we often come across events whose outcome is uncertain. The uncertainty could be because of

- our inability to observe accurately all the inputs required to compute the outcome;
- excessive cost of observing all the inputs;
- lack of understanding of the phenomenon;
- dependence on choices to be made in the future, like the outcome of an election.
Randomness is helpful for modeling uncertainty

At every step of the “cosmic distance ladder”, larger uncertainties creep in. Each step also inherits all the problems of the ones below.

- So we need to **model uncertainty**, i.e., provide a structure to the notion of uncertainty.
Outline

Why study probability?

Mathematical formalization

Conditional probability

Discrete random variables

Continuous distributions

Limit theorems
Existing Intuition is Useful

The structure needed to understand a coin toss is intuitive. We assign a probability $1/2$ to the outcome HEAD and a probability $1/2$ to the outcome TAIL of appearing.

Similarly, for each of the outcomes $1,2,3,4,5,6$ of the throw of a die, we assign a probability $1/6$ of appearing.

Similarly, for each of the outcomes $000001, \ldots, 999999$ of a lottery ticket, we assign a probability $1/999999$ of being the winning ticket.
More generally, associated with any experiment we have a sample space Ω consisting of outcomes $\{o_1, o_2, \ldots, o_m\}$.

- Coin Toss: $\Omega = \{H, T\}$
- One die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Lottery: $\Omega = \{1, \ldots, 999999\}$

Each outcome is assigned a probability according to the physical understanding of the experiment.

- Coin Toss: $p_H = 1/2$, $p_T = 1/2$
- One die: $p_i = 1/6$ for $i = 1, \ldots, 6$
- Lottery: $p_i = 1/999999$ for $i = 1, \ldots, 999999$

Note that in each example, the sample space is finite and the probability assignment is uniform (i.e., the same for every outcome in the sample space), but this need not be the case.
Discrete Sample Space: Countably many outcomes

More generally, for an experiment with a finite sample space $\Omega = \{o_1, o_2, \ldots, o_m\}$, we assign a probability p_i to the outcome o_i for every i in such a way that the probabilities add up to 1, i.e., $p_1 + \cdots + p_m = 1$.

In fact, the same holds for an experiment with a countably infinite sample space. (Example: Roll one die until you get your first six.)

A finite or countably infinite sample space is sometimes called discrete.

Uncountably infinite sample spaces exist, and there are some additional technical issues associated with them. We will hint at these issues without discussing them in detail.
An event is a subset of the sample space (almost)

- A subset $E \subseteq \Omega$ is called an *event*.
- For a discrete sample space, this may if desired be taken as the mathematical definition of *event*.

Technical word of warning: If Ω is uncountably infinite, then we cannot in general allow arbitrary subsets to be called events; in strict mathematical terms, a *probability space* consists of:
 - a sample space Ω,
 - a set \mathcal{F} of subsets of Ω that will be called the events,
 - a function P that assigns a probability to each event and that must obey certain axioms.

Often, we don’t have to worry about these technical details in practice.
Back to the dice. Suppose we are gambling with one die and have a situation like this:

<table>
<thead>
<tr>
<th>outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>net dollars earned</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>−2</td>
<td>4</td>
</tr>
</tbody>
</table>

Our interest in the outcome is only through its association with the monetary amount. So we are interested in a function from the outcome space Ω to the real numbers \mathbb{R}. Such a function is called a random variable.

Technical word of warning: A random variable must be a measurable function from Ω to \mathbb{R}, i.e., the inverse function applied to any interval subset of \mathbb{R} must be an event in \mathcal{F}. For our discrete sample space, *any* map $X : \Omega \to \mathbb{R}$ works.
Random Variables may define events

<table>
<thead>
<tr>
<th>outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>net dollars earned</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>−2</td>
<td>4</td>
</tr>
</tbody>
</table>

Let X be the amount of money won on one throw of a die. We are interested in events of the form $\{\omega \in \Omega : X(\omega) = x\}$ for a given x. (Shorthand notation: $\{X = x\}$)

- for $x = 0$, $\{X = x\}$ is the event $\{3\}$.
- for $x = 4$, $\{X = x\}$ is the event $\{4, 6\}$.
- for $x = 10$, $\{X = x\}$ is the event \emptyset.

Notation is informative: Capital “X” is the random variable whereas lowercase “x” is some fixed value attainable by the random variable X.

Thus X, Y, Z might stand for random variables, while x, y, z could denote specific points in the ranges of X, Y, and Z, respectively.
Random Variables are a way to quantify uncertainty

<table>
<thead>
<tr>
<th>outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>net dollars earned</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>−2</td>
<td>4</td>
</tr>
</tbody>
</table>

- The probabilistic properties of a random variable are determined by the probabilities assigned to the outcomes of the underlying sample space.

- Example: To find the probability that you win 4 dollars, i.e. \(P\{X = 4\} \), you want to find the probability assigned to the event \(\{4, 6\} \). Thus

\[
P\{\omega \in \Omega : X(\omega) = 4\} = P\{4, 6\} = (1/6) + (1/6) = 1/3.
\]
Disjoint events: Prob’ty of union = sum of prob’ties

\[P\{\omega \in \Omega : X(\omega) = 4\} = P\{4, 6\} = (1/6) + (1/6) = 1/3. \]

- Adding \(1/6 + 1/6\) to find \(P\{4, 6\}\) uses a probability axiom known as \textit{finite additivity}:

 Given disjoint events \(A\) and \(B\), \(P(A \cup B) = P(A) + P(B)\).

- In fact, any probability measure must satisfy \textit{countable additivity}:

 Given mutually disjoint events \(A_1, A_2, \ldots\), the probability of the (countably infinite) union equals the sum of the probabilities.

\textbf{N.B.:} “Disjoint” means ”having empty intersection”.
Probability Mass Function: Summary of a R.V.

\[P\{\omega \in \Omega : X(\omega) = 4\} = P(\{4, 6\}) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}. \]

- \(\{X = x\} \) is shorthand for \(\{\omega \in \Omega : X(\omega) = x\} \)
- If we summarize the possible nonzero values of \(P(\{X = x\}) \), we obtain a function of \(x \) called the probability mass function of \(X \), sometimes denoted \(f(x) \) or \(p(x) \) or \(f_X(x) \):

\[
f_X(x) = P(\{X = x\}) = \begin{cases}
1/6 & \text{for } x = 0 \\
1/6 & \text{for } x = 2 \\
2/6 & \text{for } x = 4 \\
1/6 & \text{for } x = -2 \\
1/6 & \text{for } x = -8 \\
0 & \text{for any other value of } x.
\end{cases}
\]
Probability functions must satisfy three axioms

Any probability function P must satisfy these three axioms, where A and A_i denote arbitrary events:

- $P(A) \geq 0$ (Nonnegativity)
- If A is the whole sample space Ω then $P(A) = 1$
- If A_1, A_2, \ldots are mutually exclusive (i.e., disjoint, which means that $A_i \cap A_j = \emptyset$ whenever $i \neq j$), then

$$P \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i) \quad (Countable \ additivity)$$

Technical digression: If Ω is uncountably infinite, it is impossible to define P satisfying these axioms if “event” means “any subset of Ω.”
Inclusion-Exclusion Rule: Prob’ty of a general union

Countable additivity requires that if A, B are disjoint,

$$P(A \cup B) = P(A) + P(B).$$

More generally, for any two events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$
Inclusion-Exclusion Rule: Prob’ty of a general union

- Similarly, for three events A, B, C:

\[
P(A \cup B \cup C) = P(A) + P(B) + P(C) \]
\[-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)
\]

- This identity has a generalization to n events called the inclusion-exclusion rule.
Probabilities can be based on counting outcomes

- Simplest case: Due to inherent symmetries, we can model each outcome in Ω as being equally likely.

- When Ω has m equally likely outcomes o_1, o_2, \ldots, o_m,

 \[P(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{m}. \]

- Well-known example (not easy): If n people shuffle their hats, what is the probability that at least one person gets his own hat back? The answer,

 \[1 - \sum_{i=0}^{n} \frac{(-1)^i}{i!} \approx 1 - \frac{1}{e} = 0.6321206 \ldots, \]

 can be obtained using the inclusion-exclusion rule; try it yourself, then google “matching problem” if you get stuck.
Probabilities can be based on counting outcomes

Example: Toss a coin three times
Define $X =$Number of Heads in 3 tosses.

- $X(\Omega) = \{0, 1, 2, 3\}$
- $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

<table>
<thead>
<tr>
<th>Ω</th>
<th>$X(\Omega)$ = {0, 1, 2, 3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>← 3 Heads</td>
</tr>
<tr>
<td>HHT, HTH, THH,</td>
<td>← 2 Heads</td>
</tr>
<tr>
<td>HTT, THT, TTH,</td>
<td>← 1 Head</td>
</tr>
<tr>
<td>TTT</td>
<td>← 0 Heads</td>
</tr>
</tbody>
</table>

$p(\{\omega\}) = 1/8$ for each $\omega \in \Omega$

$f(0) = 1/8$, $f(1) = 3/8$, $f(2) = 3/8$, $f(3) = 1/8$

NB: Even though there are four possible values of X, this fact alone does not imply they all have probability 1/4. **Probability by counting only works when the things being counted are equally likely.**
Outline

Why study probability?

Mathematical formalization

Conditional probability

Discrete random variables

Continuous distributions

Limit theorems
There is an intuitive notion of “conditional” prob’ty

- Let X be the number that appears on the throw of a die.
- Each of the six outcomes is equally likely, but suppose I take a peek and tell you that X is an even number.
- Question: What is the probability that the outcome belongs to $\{1, 2, 3\}$?
- Given the information I conveyed, the six outcomes are no longer equally likely. Instead, the outcome is one of $\{2, 4, 6\}$ – each being equally likely.
- So conditional on the event $\{2, 4, 6\}$, the probability that the outcome belongs to $\{1, 2, 3\}$ equals $1/3$.

More generally, consider an experiment with m equally likely outcomes and let A and B be two events. Given the information that B has occurred, the probability that A occurs is called the conditional probability of A given B and is written $P(A \mid B)$.
Definition of conditional prob’ty matches intuition

In general, when A and B are events such that $P(B) > 0$, the conditional probability of A given that B has occurred, $P(A | B)$, is defined by

$$P(A | B) = \frac{P(A \cap B)}{P(B)}.$$

Specific case: Uniform probabilities
Let $|A| = k$, $|B| = \ell$, $|A \cap B| = j$, $|\Omega| = m$. Given that B has happened, the new probability assignment gives a probability $1/\ell$ to each of the outcomes in B. Out of these ℓ outcomes of B, $|A \cap B| = j$ outcomes also belong to A. Hence

$$P(A | B) = \frac{j}{\ell}.$$

Noting that $P(A \cap B) = j/m$ and $P(B) = \ell/m$, it follows that

$$P(A | B) = \frac{P(A \cap B)}{P(B)}.$$
The multiplicative law: Deceptively simple

- When A and B are events such that $P(B) > 0$, the conditional probability of A given that B has occurred, $P(A \mid B)$, is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

- This definition may be phrased as the **Multiplicative law of conditional probability** (NB: Nothing about independence here!),

$$P(A \cap B) = P(A \mid B)P(B).$$

- The multiplicative law has a generalization to n events:

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_n \mid A_1, \ldots, A_{n-1}) \times P(A_{n-1} \mid A_1, \ldots, A_{n-2}) \times \ldots \times P(A_2 \mid A_1) \times P(A_1).$$
The well-known birthday problem uses conditioning

What is the probability that, in a group of n people, there is at least one pair of matching birth dates?

The answer, given simplifying assumptions, is one minus

$$\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \cdots \quad (n \text{ terms}). \quad (1)$$

But why do we multiply these probabilities?

Answer: If A_1, A_2, A_3, \ldots are chosen cleverly, (1) is simply

$$P(A_1^c) \times P(A_2^c \mid A_1^c) \times P(A_3^c \mid A_1^c, A_2^c) \times \cdots,$$

which equals $P(A_1^c \cap A_2^c \cap A_3^c \cap \cdots)$.
Partitioning the sample space yields the LOTP

Let B_1, \ldots, B_k be a partition of the sample space Ω (a partition is a set of disjoint sets whose union is Ω), and let A be an arbitrary event:

$$P(A) = P(A \cap B_1) + \cdots + P(A \cap B_k).$$

This is called the Law of Total Probability. Also, we know that $P(A \cap B_i) = P(A|B_i)P(B_i)$, so we obtain an alternative form of the Law of Total Probability:

$$P(A) = P(A|B_1)P(B_1) + \cdots + P(A|B_k)P(B_k).$$
Suppose a bag has 6 one-dollar coins, exactly one of which is a trick coin that has both sides HEADS. A coin is picked at random from the bag and this coin is tossed 4 times, and each toss yields HEADS.

Two questions which may be asked here are

- What is the probability of the occurrence of $A = \{\text{all four tosses yield HEADS}\}$?
- Given that A occurred, what is the probability that the coin picked was the trick coin?
The Law of Total Probability: An Example

What is the probability of the occurrence of $A = \{\text{all four tosses yield HEADS}\}$?

This question may be answered by the Law of Total Probability. Define events

$B = \text{coin picked was a regular coin,}$

$B^c = \text{coin picked was a trick coin.}$

Then B and B^c together form a partition of Ω. Therefore,

$$P(A) = P(A | B)P(B) + P(A | B^c)P(B^c)$$

$$= \left(\frac{1}{2}\right)^4 \times \frac{5}{6} + 1 \times \frac{1}{6} = \frac{7}{32}.$$

Note: The fact that $P(A | B) = (1/2)^4$ utilizes the notion of independence, which we will cover shortly, but we may also obtain this fact using brute-force enumeration of the possible outcomes in four tosses if B is given.
The Law of Total Probability: An Example

Given that \(A \) occurred, what is the probability that the coin picked was the trick coin?

For this question, we need to find

\[
P(B^c | A) = \frac{P(B^c \cap A)}{P(A)} = \frac{P(A | B^c)P(B^c)}{P(A)}
\]

\[
= \frac{1 \times \frac{1}{6}}{\frac{7}{32}} = \frac{16}{21}.
\]

Note that this makes sense: We should expect, after four straight heads, that the conditional probability of holding the trick coin, 16/21, is greater than the prior probability of 1/6 before we knew anything about the results of the four flips.
Bayes’ Theorem: Updating prior probabilities using data

Suppose we have observed that A occurred.

- Let B_1, \ldots, B_m be all possible scenarios under which A may occur, where B_1, \ldots, B_m is a partition of the sample space.
- To quantify our suspicion that B_i was the cause for the occurrence of A, we would like to obtain $P(B_i \mid A)$.
- Here, we assume that finding $P(A \mid B_i)$ is straightforward for every i. (In statistical terms, a model for how A relies on B_i allows us to do this.)
- Furthermore, we assume that we have some prior notion of $P(B_i)$ for every i. (These probabilities are simply referred to collectively as our prior.)

Bayes’ theorem is the prescription to obtain the quantity $P(B_i \mid A)$. It is the basis of Bayesian Inference. Simply put, our goal in finding $P(B_i \mid A)$ is to determine how our observation A modifies our probabilities of B_i.
Bayes’ Theorem: Updating prior prob’ties using data

Straightforward algebra reveals that

\[
P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{m} P(A \mid B_j)P(B_j)}.
\]

The above identity is what we call *Bayes’ theorem*.

Note the apostrophe *after* the “s”. The theorem is named for Thomas Bayes, an 18th-century British mathematician and Presbyterian minister.

The authenticity of the portrait shown here is a matter of some dispute.

Thomas Bayes (?)
Bayes’ Theorem: Updating prior prob’ties using data

Straightforward algebra reveals that

\[
P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{m} P(A \mid B_j)P(B_j)}.
\]

The above identity is what we call Bayes’ theorem.

Observing that the denominator above does not depend on \(i\), we may boil down Bayes’ theorem to its essence:

\[
P(B_i \mid A) \propto P(A \mid B_i) \times P(B_i) = \text{“the likelihood (i.e., the model)”} \times \text{“the prior”}.
\]

Since we often call the left-hand side of the above equation the posterior probability of \(B_i\), Bayes’ theorem may be expressed succinctly by stating that the posterior is proportional to the likelihood times the prior.
Bayes’ Theorem: Updating prior prob’ties using data

Straightforward algebra reveals that

\[
P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{m} P(A \mid B_j)P(B_j)}.
\]

The above identity is what we call Bayes’ theorem.

There are many controversies and apparent paradoxes associated with conditional probabilities. The root cause is sometimes incomplete specification of the conditions in a particular problem, though there are also some “paradoxes” that exploit people’s seemingly inherent inability to modify prior probabilities correctly when faced with new information (particularly when those prior probabilities happen to be uniform).

Try googling “three card problem,” “Monty Hall problem,” or “Bertrand’s box problem” if you’re curious.
Independence: Special case of the Multiplicative Law

- Suppose that A and B are events such that

\[P(A \mid B) = P(A). \]

In other words, the knowledge that B has occurred has not altered the probability of A.

- The Multiplicative Law of Probability tells us that in this case,

\[P(A \cap B) = P(A)P(B). \]

- When this latter equation holds, A and B are said to be independent events.

Note: The two equations here are not quite equivalent, since only the second is well-defined when B has probability zero. Thus, typically we take the second equation as the mathematical definition of independence.
Independence for more than two events is tricky

- It is tempting but not correct to attempt to define *mutual independence* of three or more events A, B, and C by requiring merely

\[P(A \cap B \cap C) = P(A)P(B)P(C). \]

However, this equation does not imply that, e.g., A and B are independent.

- A sensible definition of mutual independence should include pairwise independence.

- Thus, we define mutual independence using a sort of recursive definition:

 A set of n events is mutually independent if the probability of its intersection equals the product of its probabilities and if all subsets of this set containing from 2 to $n - 1$ elements are also mutually independent.
Independence for more than two R.V.’s is not tricky

Let X, Y, Z be random variables. Then X, Y, Z are said to be independent if

$$P(X \in S_1 \text{ and } Y \in S_2 \text{ and } Z \in S_3) = P(X \in S_1)P(Y \in S_2)P(Z \in S_3)$$

for all possible measurable subsets (S_1, S_2, S_3) of \mathbb{R}.

This notion of independence can be generalized to any finite number of random variables (even two).

Note the slight abuse of notation:

"$P(X \in S_1)$" means "$P(\{\omega \in \Omega : X(\omega) \in S_1\})$".
Why study probability?

Mathematical formalization

Conditional probability

Discrete random variables

Continuous distributions

Limit theorems
Expectation of a R.V. is a weighted average

Let X be a random variable taking values x_1, x_2, \ldots, x_n. The expected value μ of X (also called the mean of X), denoted by $E(X)$, is defined by

$$\mu = E(X) = \sum_{i=1}^{n} x_i P(X = x_i).$$

Note: Sometimes physicists write $\langle X \rangle$ instead of $E(X)$, but we will use the more traditional statistical notation here.

If $Y = g(X)$ for a real-valued function $g(\cdot)$, then, by the definition above,

$$E(Y) = E[g(X)] = \sum_{i=1}^{n} g(x_i) P(X = x_i).$$

Generally, we will simply write $E[g(X)]$ without defining an intermediate random variable $Y = g(X)$.
The variance σ^2 of a random variable is defined by

$$\sigma^2 = \text{Var}(X) = E \left[(X - \mu)^2 \right].$$

Using the fact that the expectation operator is linear — i.e.,

$$E(aX + bY) = aE(X) + bE(Y)$$

for any random variables X, Y and constants a, b — it is easy to show that

$$E \left[(X - \mu)^2 \right] = E(X^2) - \mu^2.$$

This latter form of $\text{Var}(X)$ is usually easier to use for computational purposes.
Let X be a random variable taking values $+1$ or -1 with probability $1/2$ each.

Let Y be a random variable taking values $+10$ or -10 with probability $1/2$ each.

Then both X and Y have the same mean, namely 0, but a simple calculation shows that $\text{Var}(X) = 1$ and $\text{Var}(Y) = 100$.

This simple example illustrates that the variance of a random variable describes in some sense how spread apart the values taken by the random variable are.
As an example of a random variable with no expectation, suppose that \(X \) is defined on some (infinite) sample space \(\Omega \) so that for all positive integers \(i \),

\[
X \text{ takes the value } \begin{cases}
2^i & \text{with probability } 2^{-i-1} \\
-2^i & \text{with probability } 2^{-i-1}.
\end{cases}
\]

Both the positive part and the negative part of \(X \) have infinite expectation in this case, so \(E(X) \) would have to be \(\infty - \infty \), which is impossible to define.
Counting successes for fixed # trials: Binomial R.V.

- Consider n independent trials where the probability of “success” in each trial is $p \in (0, 1)$; let X denote the total number of successes.

- Then $P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$ for $x = 0, 1, \ldots, n$.

- X is said to be a binomial random variable with parameters n and p, and this is written as $X \sim B(n, p)$.

- One may show that $E(X) = np$ and $Var(X) = np(1 - p)$.

- See, for example, A. Mészáros, “On the role of Bernoulli distribution in cosmology,” *Astron. Astrophys.*, 328, 1-4 (1997). In this article, there are n uniformly distributed points in a region of volume $V = 1$ unit. Taking X to be the number of points in a fixed region of volume p, X has a binomial distribution. More specifically, $X \sim B(n, p)$.
Consider a random variable Y such that for some $\lambda > 0$,

$$P(Y = y) = \frac{\lambda^y}{y!} e^{-\lambda}$$

for $y = 0, 1, 2, \ldots$.

Then Y is said to be a Poisson random variable, written $Y \sim \text{Poisson}(\lambda)$.

Here, one may show that $E(Y) = \lambda$ and $\text{Var}(Y) = \lambda$.

If X has Binomial distribution $B(n, p)$ with large n and small p, then X can be approximated by a Poisson random variable Y with parameter $\lambda = np$, i.e.

$$P(X \leq a) \approx P(Y \leq a)$$
A Poisson random variable in the literature

The International Space Station is at risk from orbital debris and micrometeorite impact. How can one assess the risk of a micrometeorite impact?

A fundamental assumption underlying risk modeling is that orbital collision problem can be modeled using a Poisson distribution. “ ... assumption found to be appropriate based upon the Poisson ... as an approximation for the binomial distribution and ... that is it proper to physically model exposure to the orbital debris flux environment using the binomial distribution. ”
Consider \(n \) independent trials where the probability of “success” in each trial is \(p \in (0, 1) \).

Unlike the binomial case in which the number of trials is fixed, let \(X \) denote the number of failures observed before the first success.

Then

\[
P(X = x) = (1 - p)^x p
\]

for \(x = 0, 1, \ldots \).

\(X \) is said to be a geometric random variable with parameter \(p \).

Its expectation and variance are \(E(X) = \frac{q}{p} \) and \(Var(X) = \frac{q}{p^2} \), where \(q = 1 - p \).
Failures before rth success: Negative Binomial R.V.

- Same setup as the geometric, but let X be the number of failures before observing r successes.

- $P(X = x) = \binom{r + x - 1}{x} (1 - p)^x p^r$ for $x = 0, 1, 2, \ldots$.

- X is said to be a *negative binomial* distribution with parameters r and p.

- Its expectation and variance are $E(X) = \frac{rq}{p}$ and $Var(X) = \frac{rq}{p^2}$, where $q = 1 - p$.

- The geometric distribution is a special case of the negative binomial distribution.

- See, for example, Neyman, Scott, and Shane (1953), On the Spatial Distribution of Galaxies: A specific model, *ApJ 117*: 92–133. In this article, ν is the number of galaxies in a randomly chosen cluster. A basic assumption is that ν follows a negative binomial distribution.
Outline

Why study probability?

Mathematical formalization

Conditional probability

Discrete random variables

Continuous distributions

Limit theorems
Beyond Discreteness: Technical issues arise

- Earlier, a *random variable* was a function from Ω to \mathbb{R}.
- For discrete Ω, this definition always works.
- But if Ω is uncountably infinite (e.g., if Ω is an interval in \mathbb{R}), we must be more careful:

 Definition: A function $X : \Omega \rightarrow \mathbb{R}$ is said to be a random variable iff for all real numbers a, the set $\{\omega \in \Omega : X(\omega) \leq a\}$ is an event.

- Fortunately, we can easily define “event” to be inclusive enough that the set of random variables is closed under all common operations.
- Thus, in practice we can basically ignore the technical details on this slide!
Beyond Discreteness: Sums become integrals

The function F defined by

$$F(x) = \mathbb{P}(X \leq x)$$

is called the distribution function of X, or sometimes the cumulative distribution function, abbreviated c.d.f.

If there exists a function f such that

$$F(x) = \int_{-\infty}^{x} f(t) \, dt \quad \text{for all } x,$$

then f is called a density of X.

Note: The word “density” in probability is different from the word “density” in physics.
Beyond Discreteness: Sums become integrals

- The function \(F \) defined by
 \[
 F(x) = P(X \leq x)
 \]
is called the distribution function of \(X \), or sometimes the cumulative distribution function, abbreviated c.d.f.

- If there exists a function \(f \) such that
 \[
 F(x) = \int_{-\infty}^{x} f(t) \, dt
 \]
 for all \(x \),

 then \(f \) is called a density of \(X \).

Note: It is typical to use capital “\(F \)” for the c.d.f. and lowercase “\(f \)” for the density function (recall that we earlier used \(f \) for the probability mass function; this creates no ambiguity because a random variable may not have both a density and a mass function).
The function F defined by

$$F(x) = P(X \leq x)$$

is called the distribution function of X, or sometimes the cumulative distribution function, abbreviated c.d.f.

If there exists a function f such that

$$F(x) = \int_{-\infty}^{x} f(t) \, dt$$

for all x,

then f is called a density of X.

Note: Every random variable has a uniquely defined c.d.f. $F(\cdot)$ and $F(x)$ is defined for all real numbers x. In fact, \(\lim_{x \to -\infty} F(x)\) and \(\lim_{x \to \infty} F(x)\) always exist and are always equal to 0 and 1, respectively.
Beyond Discreteness: Sums become integrals

The function F defined by

$$F(x) = P(X \leq x)$$

is called the distribution function of X, or sometimes the cumulative distribution function, abbreviated c.d.f.

If there exists a function f such that

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

for all x,

then f is called a density of X.

Note: Sometimes a random variable X is called “continuous”. This does not mean that $X(\omega)$ is a continuous function; rather, it means that $F(x)$ is a continuous function. Thus, it is technically preferable to say “X has a continuous distribution” instead of “X is a continuous random variable.”
Continuous version of geometric: Exponential R.V.

- Let $\lambda > 0$ be some positive parameter.
- The *exponential* distribution with mean $1/\lambda$ has density

$$f(x) = \begin{cases}
\lambda \exp(-\lambda x) & \text{if } x \geq 0 \\
0 & \text{if } x < 0.
\end{cases}$$

The exponential density for $\lambda = 1$:

![Exponential Density Function (lambda=1)](image_url)
Let $\lambda > 0$ be some positive parameter.

The *exponential* distribution with mean $1/\lambda$ has c.d.f.

$$F(x) = \int_{-\infty}^{x} f(t) \, dt = \begin{cases} 1 - \exp\{-\lambda x\} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

The exponential c.d.f. for $\lambda = 1$:

Exponential Distribution Function (lambda=1)
The Normal Distribution

- Let $\mu \in \mathbb{R}$ and $\sigma > 0$ be two parameters.

- The normal distribution with mean μ and variance σ^2 has density

 $$f(x) = \varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}.$$

The normal density function for several values of (μ, σ^2):
The Normal Distribution

Let $\mu \in \mathbb{R}$ and $\sigma > 0$ be two parameters.

The normal distribution with mean μ and variance σ^2 has a c.d.f. without a closed form. But when $\mu = 0$ and $\sigma = 1$, the c.d.f. is sometimes denoted $\Phi(x)$.

The normal c.d.f. for several values of (μ, σ^2):
The Lognormal Distribution

Let \(\mu \in \mathbb{R} \) and \(\sigma > 0 \) be two parameters.

If \(X \sim N(\mu, \sigma^2) \), then \(\exp(X) \) has a lognormal distribution with parameters \(\mu \) and \(\sigma^2 \).

The lognormal distribution with parameters \(\mu \) and \(\sigma^2 \) has density

\[
 f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{ -\frac{(\ln(x) - \mu)^2}{2\sigma^2} \right\} \text{ for } x > 0.
\]

Standard lognormal density (i.e., \(\mu = 0 \) and \(\sigma = 1 \)).
The Lognormal Distribution

- A common astronomical dataset that can be well-modeled by a shifted lognormal distribution is the set of luminosities of the globular clusters in a galaxy (technically, in this case the size of the shift would be a third parameter).
- With a shift equal to γ, the density becomes

$$f(x) = \frac{1}{(x - \gamma)\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(\ln(x - \gamma) - \mu)^2}{2\sigma^2} \right\} \text{ for } x > \gamma.$$

In the picture, $\gamma = 2$, $\mu = 0$, and $\sigma = 1$.
Expectation: Still a weighted average

- For a random variable X with density f, the expected value of $g(X)$, where g is a real-valued function defined on the range of X, is equal to

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \, dx.$$

- Two common examples of this formula are given by the mean of X:

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x) \, dx$$

and the variance of X:

$$\sigma^2 = E[(X-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) \, dx = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \mu^2.$$
Expectation for two common continuous distributions

- For a random variable X with normal density

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\},$$

we have $E(X) = \mu$ and $Var(X) = E[(X - \mu)^2] = \sigma^2$.

- For a random variable Y with lognormal density

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{ -\frac{(\ln(x) - \mu)^2}{2\sigma^2} \right\} \text{ for } x > 0,$$

We have

$$E(X) = e^{\mu + (\sigma^2/2)}$$

$$Var(X) = E[(X - \mu)^2] = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}.$$
Outline

Why study probability?
Mathematical formalization
Conditional probability
Discrete random variables
Continuous distributions
Limit theorems
Limit Theorems: Behavior of sums as $n \to \infty$

- Define a random variable X on the sample space for some experiment such as a coin toss.
- When the experiment is conducted many (say, n) times, we are generating a sequence of random variables.
- If the experiment never changes and the results of one experiment do not influence the results of any other, this sequence is called independent and identically distributed (i.i.d.).

Typical notation:

“Let X_1, \ldots, X_n be i.i.d. random variables from some unknown distribution $F(x)$...”
Suppose we gamble on the toss of a coin as follows: HEADS means you give me 1 dollar; TAILS means you give me -1 dollar, i.e., I give you 1 dollar.

After n flips, we have X_1, \ldots, X_n, where the X_i are i.i.d. and

$$X_i = \begin{cases}
+1 & \text{with prob. } 1/2 \\
-1 & \text{with prob. } 1/2.
\end{cases}$$

Then $S_n = X_1 + X_2 + \cdots + X_n$ represents my gain after playing n rounds of this game. We will discuss some of the properties of this S_n random variable.
Limit Theorems: Behavior of sums as $n \rightarrow \infty$

I win one dollar \rightarrow I lose one dollar

- Recall: $S_n = X_1 + X_2 + \cdots + X_n$ represents my gain after playing n rounds of this game.

- Here are some possible events and their probabilities. The proportion of games won is the same in each case.

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{10} \leq -2$</td>
<td>0.38</td>
</tr>
<tr>
<td>i.e. I lost at least 6 out of 10</td>
<td>moderate</td>
</tr>
<tr>
<td>$S_{100} \leq -20$</td>
<td>0.03</td>
</tr>
<tr>
<td>i.e. I lost at least 60 out of 100</td>
<td>unlikely</td>
</tr>
<tr>
<td>$S_{1000} \leq -200$</td>
<td>1.36×10^{-10}</td>
</tr>
<tr>
<td>i.e. I lost at least 600 out of 1000</td>
<td>impossible</td>
</tr>
</tbody>
</table>
Limit Theorems: Behavior of sums as $n \to \infty$

I win one dollar → I lose one dollar

- Recall: $S_n = X_1 + X_2 + \cdots + X_n$ represents my gain after playing n rounds of this game.

- Here is a similar table:

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>PROPORTION</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_{10}</td>
<td>\leq 1$</td>
</tr>
<tr>
<td>$</td>
<td>S_{100}</td>
<td>\leq 8$</td>
</tr>
<tr>
<td>$</td>
<td>S_{1000}</td>
<td>\leq 40$</td>
</tr>
</tbody>
</table>

- Notice the trend: As n increases, it appears that S_n is more likely to be near zero and less likely to be extreme-valued.
Law of Large Numbers: Famous, oft misunderstood!

- Suppose X_1, X_2, \ldots is a sequence of i.i.d. random variables with $E(X_1) = \mu < \infty$. Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

converges to $\mu = E(X_1)$ in the following sense: For any fixed $\epsilon > 0$,

$$P(|\bar{X}_n - \mu| > \epsilon) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

- In words: The sample mean \bar{X}_n converges to the population mean μ.

- It is very important to understand the distinction between the sample mean, which is a random variable and depends on the data, and the true (population) mean, which is a constant.
Law of Large Numbers: Famous, oft misunderstood!

In our example in which S_n is the sum of i.i.d. ±1 variables, here is a plot of n vs. $X_n = S_n/n$ for a simulation:

![Graph showing the law of large numbers](image-url)
Let $\Phi(x)$ denote the c.d.f. of a standard normal (mean 0, variance 1) distribution.

Consider the following table, based on our earlier coin-flipping game:

<table>
<thead>
<tr>
<th>Event</th>
<th>Probability</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{1000}/\sqrt{1000} \leq 0$</td>
<td>0.513</td>
<td>$\Phi(0) = 0.500$</td>
</tr>
<tr>
<td>$S_{1000}/\sqrt{1000} \leq 1$</td>
<td>0.852</td>
<td>$\Phi(1) = 0.841$</td>
</tr>
<tr>
<td>$S_{1000}/\sqrt{1000} \leq 1.64$</td>
<td>0.947</td>
<td>$\Phi(1.64) = 0.950$</td>
</tr>
<tr>
<td>$S_{1000}/\sqrt{1000} \leq 1.96$</td>
<td>0.973</td>
<td>$\Phi(1.96) = 0.975$</td>
</tr>
</tbody>
</table>

It seems as though $S_{1000}/\sqrt{1000}$ behaves a bit like a standard normal random variable.
Central Limit Theorem: Fundamental Thm of Prob’ty?

- Suppose X_1, X_2, \ldots is a sequence of i.i.d. random variables such that $E(X_1^2) < \infty$.
- Let $\mu = E(X_1)$ and $\sigma^2 = E[(X_1 - \mu)^2]$. In our coin-flipping game, $\mu = 0$ and $\sigma^2 = 1$.
- Let $X_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Remember: μ is the population mean and \overline{X}_n is the sample mean.
- Then for any real x,

$$P \left\{ \sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \leq x \right\} \rightarrow \Phi(x) \text{ as } n \rightarrow \infty.$$

This (amazing!) fact is called the Central Limit Theorem.
Central Limit Theorem: Fundamental Thm of Prob’ty?

The CLT is illustrated by the following figure, which gives histograms based on the coin-flipping game: