Outline

- General Concepts of Regression, Bias-Variance Tradeoff
- Linear Regression
- Nonparametric Procedures
- Cross Validation
- Local Polynomial Regression
- Confidence Bands
- Basis Methods: Splines
- Multiple Regression
The Regression Problem:

Objective is to construct a **model** that can be used to predict the **response variable** Y using observation of the **predictor variables** X.

Note: In this framework, Y is real-valued, while X could be a vector.

Example: Predicting redshift from photometric information

\[
Y = \text{redshift} \\
X = \text{intensity in different photometric bands}
\]
The Regression Problem:

Observe a training sample \((X_1, Y_1), \ldots, (X_n, Y_n)\), use this to estimate

\[
f(x) = \mathbb{E}(Y | X = x).
\]

Equivalently: Estimate \(f(x)\) when

\[
Y_i = f(X_i) + \epsilon_i, \quad i = 1, 2, \ldots, n
\]

where \(\mathbb{E}(\epsilon_i) = 0\).

Simple estimators when \(X\) is real-valued:

\[
\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x \quad \text{parametric}
\]
\[
\hat{f}(x) = \text{mean}\{Y_i : |X_i - x| \leq h\} \quad \text{nonparametric}
\]
Basic Concepts of Regression

Parametric Regression:

\[Y = \beta_0 + \beta_1 X + \epsilon \]
\[Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_d X_d + \epsilon \]
\[Y = \beta_0 e^{\beta_1 X_1} + \frac{\beta_2}{X_2} + \epsilon \]

Nonparametric Regression:

\[Y = f(X) + \epsilon \]
\[Y = f_1(X_1) + \cdots + f_d(X_d) + \epsilon \]
\[Y = f(X_1, X_2) + \epsilon \]
We will first quickly look at a simple example from astronomy
Example: Type Ia Supernovae

From Riess, et al. (2007), 182 Type Ia Supernovae
Assumption:

Observed (redshift, distance modulus) pairs \((z_i, Y_i)\) are related by

\[Y_i = f(z_i) + \sigma_i \epsilon_i, \]

where the \(\epsilon_i\) are i.i.d. standard normal with mean zero.

Objective: Estimate \(f(\cdot)\).
Example: Type Ia Supernovae

ΛCDM, two parameter model:

$$f(z) = 5 \log_{10} \left(\frac{c(1 + z)}{H_0} \int_0^z \frac{du}{\sqrt{\Omega_m (1 + u)^3 + (1 - \Omega_m)}} \right) + 25$$
Example: Type Ia Supernovae

Estimate where $H_0 = 72.76$ and $\Omega_m = 0.341$ (the MLE)
Example: Type Ia Supernovae

Fourth order polynomial fit: $Y = \beta_0 + \beta_1 z + \beta_2 z^2 + \beta_3 z^3 + \beta_4 z^4 + \epsilon$
Example: Type Ia Supernovae

Fifth order polynomial fit: \(Y = \beta_0 + \beta_1 z + \beta_2 z^2 + \beta_3 z^3 + \beta_4 z^4 + \beta_5 z^5 + \epsilon \)
The previous two slides illustrate the fundamental challenge of constructing a regression model: How complex should it be?
The Bias–Variance Tradeoff

Must choose model to achieve balance between

too simple – high bias, i.e., $\mathbb{E}(\hat{f}(x))$ not close to $f(x)$
precise, but not accurate

too complex – high variance, i.e., $\text{Var}(\hat{f}(x))$ large
accurate, but not precise

This is the classic **bias–variance tradeoff**.

Could be called the **accuracy–precision tradeoff**.
An Example:

Consider the **Linear Regression Model**.

These models are of the form

$$\hat{f}(x) = \hat{\beta}_0 + \sum_{i=1}^{p} \hat{\beta}_i g_i(x)$$

where $g_i(\cdot)$ are fixed, specified functions. (For example, $g_i(x) = x^i$.)

Increasing p yields more complex model.
Linear regression models are the classic approach to regression. Here, the response is modelled as a linear combination of p selected predictors.
Linear Regression

Assume that

\[Y = \beta_0 + \sum_{i=1}^{p} \beta_i g_i(x) + \epsilon \]

where \(g_i(\cdot) \) are specified functions, not estimated.

Assume that \(\mathbb{E}(\epsilon) = 0, \text{Var}(\epsilon) = \sigma^2 \)

Often assume \(\epsilon \) is Gaussian, but this is not essential

Start with the **Simple Linear Regression** model:

\[Y = \beta_0 + \beta_1 x + \epsilon \]
LRG data from 2SLAQ, www.2slaq.info
Showing one of the fitted values, \hat{Y}_i.
Showing one of the **residuals**, $\hat{\epsilon}_i$.
The line fit here is

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\epsilon}_i$$

with $\hat{\beta}_0 = 0.493$ and $\hat{\beta}_1 = 0.0272$.

These estimates of β_0 and β_1 given above minimize the **sum of squared errors**:

$$\text{SSE} = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

This is **least squares regression**.

If ϵ_i are Gaussian, then $\hat{\beta}$ are Gaussian, leading to confidence intervals, hypothesis tests.
Least squares has a natural **geometric interpretation**.
The **Design Matrix**:

\[
D = \begin{pmatrix}
1 & g_1(X_1) & g_2(X_1) & \cdots & g_p(X_1) \\
1 & g_1(X_2) & g_2(X_2) & \cdots & g_p(X_2) \\
& \vdots & \vdots & \ddots & \vdots \\
1 & g_1(X_n) & g_2(X_n) & \cdots & g_p(X_n)
\end{pmatrix}
\]

Then, \(L = D(D^T D)^{-1} D^T \) is the **projection matrix**.

Note that \(\nu = \text{trace}(L) = p + 1 \) = complexity of model.
Let Y be a n-vector filled with Y_1, Y_2, \ldots, Y_n.

The Least Squares Estimates of β:

$$
\hat{\beta} = (D^T D)^{-1} D^T Y
$$

The Fitted Values:

$$
\hat{Y} = LY = D\hat{\beta}
$$

The Residuals:

$$
\hat{\epsilon} = Y - \hat{Y} = (I - L)Y
$$
Linear regression in R is done via the command `lm()`

```r
> holdlm = lm(y ~ x)
```

Note: That is a “tilde” (`∼`) between `y` and `x`.

Default is to include intercept term. If want to exclude, use

```r
> holdlm = lm(y ~ x - 1)
```
Linear Regression in R

Fitting the model $Y = \beta_0 + \beta_1 x + \epsilon$

The `summary()` shows the key output

```r
> holdlm = lm(y ~ x)
> summary(holdlm)
```

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | -0.2468 | 0.1061 | -2.326 | 0.0319 * |
| x | 2.0671 | 0.1686 | 12.260 | 3.57e-10 *** |

Note that $\hat{\beta}_1 = 2.07$, the SE for $\hat{\beta}_1$ is approximately 0.17.
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | -0.2468 | 0.1061 | -2.326 | 0.0319 * |
| x | 2.0671 | 0.1686 | 12.260 | 3.57e-10 *** |

If the ϵ are Gaussian, then the last column gives the p-value for the test of $H_0: \beta_i = 0$ versus $H_1: \beta_i \neq 0$.

Also, if the ϵ are Gaussian,

$$\hat{\beta}_i \pm 2 \hat{SE}(\hat{\beta}_i)$$

is an approximate 95% confidence interval for β_i.
Always a good idea to look at plot of residuals versus fitted values. There should be no apparent pattern.

> plot(holdlm$residuals, holdlm$fitted.values)
Is it reasonable to assume ϵ are Gaussian? Check the normal probability plot of the residuals.

```r
> qqplot(holdlm$residuals)
> qqline(holdlm$residuals)
```
Simple to include more terms in the model:

> holdlm = lm(y ~ x + z)

Unfortunately, this does not work:

> holdlm = lm(y ~ x + x^2)

Instead, can use:

> holdlm = lm(y ~ x + I(x^2))
A standard way of quantifying the strength of the linear relationship between two variables is via the (Pearson) correlation coefficient.

Sample Version:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} X'_i \cdot Y'_i$$

where X'_i and Y'_i are the standardized versions of X_i and Y_i, i.e.,

$$X'_i = \frac{X_i - \overline{X}}{s_X}.$$
The Correlation Coefficient

Note that $-1 \leq r \leq 1$.

$r = 1$ indicates perfect linear, increasing relationship
$r = -1$ indicates perfect linear, decreasing relationship

Also, note that

$$\hat{\beta}_1 = r \left(\frac{s_Y}{s_X} \right)$$

In R: use `cor()`
The Correlation Coefficient

Examples of different scatter plots and values for r (Wikipedia)
The Coefficient of Determination

A very popular, but overused, regression diagnostic is the coefficient of determination, denoted R^2

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

“The proportion of the variation explained by the model.”

Note that $0 \leq R^2 \leq 1$, and, $R^2 = r^2$.

But: Large R^2 does not imply that “the model is a good fit.”
“Anscombe’s Quartet” (1973)

Each of these has the same value for the marginal means and variances, same r, same R^2, same $\hat{\beta}_0$ and $\hat{\beta}_1$.
Now we will begin our discussion of nonparametric regression.

Reconsider the SNe example from the start of the lecture.
Example: Type Ia Supernovae

Nonparametric estimate.
The Bias–Variance Tradeoff

Nonparametric Case:

Every nonparametric procedure requires a smoothing parameter h.

Consider the regression estimator based on local averaging:

$$\hat{f}(x) = \operatorname{mean}\{Y_i : |X_i - x| \leq h\}.$$

Increasing h yields smoother estimate \hat{f}.

What is “nonparametric?”

Data

Assumptions

Estimate

In the parametric case, the influence of assumptions is fixed.
In the nonparametric case, the influence of assumptions is controlled by h, where $h = O \left(\frac{1}{n^{1/5}} \right)$.
The Bias–Variance Tradeoff

Can formalize this via appropriate measure of error in estimator

Squared error loss:

\[
L(f(x), \hat{f}(x)) = (f(x) - \hat{f}(x))^2.
\]

Mean squared error (MSE) (risk):

\[
\text{MSE} = R(f(x), \hat{f}(x)) = \mathbb{E}(L(f(x), \hat{f}(x))).
\]
The Bias–Variance Tradeoff

The key result:

\[R(f(x), \hat{f}(x)) = \text{bias}_x^2 + \text{variance}_x \]

where

\[
\begin{align*}
\text{bias}_x &= \mathbb{E}(\hat{f}(x)) - f(x) \\
\text{variance}_x &= \text{Var}(\hat{f}(x))
\end{align*}
\]

Often written as

\[\text{MSE} = \text{BIAS}^2 + \text{VARIANCE}. \]
The Bias–Variance Tradeoff

Mean Integrated Squared Error:

\[
\text{MISE} = \int R(f(x), \hat{f}(x)) \, dx
\]

\[
= \int \text{bias}_x^2 \, dx + \int \text{variance}_x \, dx
\]

Empirical version:

\[
\frac{1}{n} \sum_{i=1}^{n} R(f(x_i), \hat{f}(x_i)).
\]
The Bias–Variance Tradeoff

- Risk
- Bias squared
- Variance

Optimal smoothing

Less
More
The Bias–Variance Tradeoff

For nonparametric procedures, when x is one-dimensional,

$$\text{MISE} \approx c_1 h^4 + \frac{c_2}{nh}$$

which is minimized at

$$h = O \left(\frac{1}{n^{1/5}} \right)$$

Hence,

$$\text{MISE} = O \left(\frac{1}{n^{4/5}} \right)$$

whereas, for parametric problems, when the model is correct,

$$\text{MISE} = O \left(\frac{1}{n} \right)$$
Now we will begin our discussion of nonparametric regression procedures.

But, these nonparametric procedures share a common structure with linear regression. Namely, they are all **linear smoothers**.
For a **linear smoother**:

$$\hat{f}(x) = \sum_i Y_i \ell_i(x)$$

for some weights:

$$\ell_1(x), \ldots, \ell_n(x)$$

The vector of weights depends on the target point x.
If \(\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) Y_i \) then

\[
\begin{pmatrix}
\hat{Y}_1 \\
\vdots \\
\hat{Y}_n
\end{pmatrix}
\equiv
\begin{pmatrix}
\hat{f}(x_1) \\
\vdots \\
\hat{f}(x_n)
\end{pmatrix}
= \begin{pmatrix}
\ell_1(X_1) & \ell_2(X_1) & \cdots & \ell_n(X_1) \\
\ell_1(X_2) & \ell_2(X_2) & \cdots & \ell_n(X_2) \\
\vdots & \vdots & \ddots & \vdots \\
\ell_1(X_n) & \ell_2(X_n) & \cdots & \ell_n(X_n)
\end{pmatrix}
\begin{pmatrix}
Y_1 \\
\vdots \\
Y_n
\end{pmatrix}
\]

The **effective degrees of freedom** is:

\[
\nu = \text{trace}(L) = \sum_{i=1}^{n} L_{ii}.
\]

Can be interpreted as the number of parameters in the model. Recall that \(\nu = p + 1 \) for linear regression.
Consider the Extreme Cases:

When $\ell_i(X_j) = 1/n$ for all i, j,

$$\hat{f}(X_j) = \bar{Y} \quad \text{for all } j$$

and $\nu = 1$.

When $\ell_i(X_j) = \delta_{ij}$ for all i, j,

$$\hat{f}(X_j) = Y_j$$

and $\nu = n$.
To begin the discussion of nonparametric procedures, we start with a simple, but naive, approach: binning.
Divide the x-axis into bins B_1, B_2, \ldots of width h. \hat{f} is a step function based on averaging the Y_i’s in each bin:

$$\text{for } x \in B_j : \quad \hat{f}(x) = \text{mean}\left\{ Y_i : X_i \in B_j \right\}.\]$$

The (arbitrary) choice of the boundaries of the bins can affect inference, especially when h large.
Binning

WMAP data, binned estimate with $h = 15$.
Binning WMAP data, binned estimate with $h = 50$.
Binning WMAP data, binned estimate with $h = 75$.
A step beyond binning is to take local averages to estimate the regression function.
Local Averaging

For each \(x \) let

\[
N_x = \left[x - \frac{h}{2}, \ x + \frac{h}{2} \right].
\]

This is a moving window of length \(h \), centered at \(x \). Define

\[
\hat{f}(x) = \text{mean}\left\{ Y_i : \ X_i \in N_x \right\}.
\]

This is like binning but removes the arbitrary boundaries.
Local Averaging

WMAP data, local average estimate with $h = 15$.
Local Averaging

WMAP data, local average estimate with $h = 50$.
Local Averaging

WMAP data, local average estimate with $h = 75$.

![Graph showing local averaging and binned data]
Local averaging is a special case of **kernel regression**.
The local average estimator can be written:

\[\hat{f}(x) = \frac{\sum_{i=1}^{n} Y_i \, K \left(\frac{x - X_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right)} \]

where

\[K(x) = \begin{cases}
1 & |x| < 1/2 \\
0 & \text{otherwise}
\end{cases} \]

Can improve this by using a function \(K \) which is smoother.
A kernel is any smooth function K such that $K(x) \geq 0$ and

$$\int K(x) \, dx = 1, \quad \int xK(x) \, dx = 0 \quad \text{and} \quad \sigma_K^2 \equiv \int x^2K(x) \, dx > 0.$$

Some commonly used kernels are the following:

- **the boxcar kernel**: $K(x) = \frac{1}{2}I(|x| < 1)$,

- **the Gaussian kernel**: $K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$,

- **the Epanechnikov kernel**: $K(x) = \frac{3}{4}(1 - x^2)I(|x| < 1)$

- **the tricube kernel**: $K(x) = \frac{70}{81}(1 - |x|^3)^3I(|x| < 1)$.
Kernels

-3 0 3

-3 0 3

-3 0 3

-3 0 3
Kernel Regression

\[\hat{f}(x) = \frac{\sum_{i=1}^{n} Y_i \ K \left(\frac{x-X_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{x-X_i}{h} \right)} \]

We can write this as

\[\hat{f}(x) = \sum_i Y_i \ l_i(x) \]

where

\[l_i(x) = \frac{K \left(\frac{x-X_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{x-X_i}{h} \right)}. \]
Kernel Regression

WMAP data, kernel regression estimates, $h = 15$.

![Graph showing WMAP data with boxcar, Gaussian, and tricube kernel regression estimates]
Kernel Regression

WMAP data, kernel regression estimates, $h = 50$.

![Graph showing WMAP data with kernel regression estimates using boxcar, Gaussian, and tricube kernels.](image-url)
Kernel Regression

WMAP data, kernel regression estimates, $h = 75$.

![Graph showing WMAP data and kernel regression estimates using boxcar, Gaussian, and tricube kernels.](image-url)
MISE \approx \frac{h^4}{4} \left(\int x^2 K(x) dx\right)^2 \int \left(f''(x) + 2f'(x) \frac{g'(x)}{g(x)}\right)^2 dx \\
+ \frac{\sigma^2 \int K^2(x) dx}{nh} \int \frac{1}{g(x)} dx.

where \(g(x) \) is the density for \(X \).

What is especially notable is the presence of the term

\[2f'(x) \frac{g'(x)}{g(x)} = \text{design bias}. \]

Also, bias is large near the boundary. We can reduce these biases using local polynomials.
Kernel Regression

WMAP data, $h = 50$. Note the boundary bias.

- boxcar kernel
- Gaussian kernel
- tricube kernel
The deficiencies of kernel regression can be addressed by considering models which, on small scales, model the regression function as a low order polynomial.
Local Polynomial Regression

Recall polynomial regression:

\[\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 + \cdots + \hat{\beta}_p x^p \]

where \(\hat{\beta} = (\hat{\beta}_0, \ldots, \hat{\beta}_p) \) are obtained by least squares:

\[
\text{minimize} \sum_{i=1}^{n} \left(Y_i - [\beta_0 + \beta_1 x + \beta_2 x^2 + \cdots + \beta_p x^p] \right)^2
\]
Local Polynomial Regression

Local polynomial regression: approximate \(f(x) \) locally by a \textbf{different} polynomial for every \(x \):

\[
f(u) \approx \beta_0(x) + \beta_1(x)(u - x) + \beta_2(x)(u - x)^2 + \cdots + \beta_p(x)(u - x)^p
\]

for \(u \) near \(x \). Estimate \((\hat{\beta}_0(x), \ldots, \hat{\beta}_p(x))\) by \textbf{local least squares}: minimize

\[
\sum_{i=1}^{n} (Y_i - [\beta_0(x) + \beta_1(x)x + \beta_2(x)x^2 + \cdots + \beta_p(x)x^p])^2 \underbrace{K\left(\frac{x - X_i}{h}\right)}_{\text{kernel}}
\]

\[
\hat{f}(x) = \hat{\beta}_0(x)
\]
Taking $p = 0$ yields the **kernel regression estimator**:

$$
\hat{f}_n(x) = \sum_{i=1}^{n} \ell_i(x) Y_i
$$

$$
\ell_i(x) = \frac{K \left(\frac{x-x_i}{h} \right)}{\sum_{j=1}^{n} K \left(\frac{x-x_j}{h} \right)}.
$$

Taking $p = 1$ yields the **local linear estimator**. This is the best, all-purpose smoother.

Choice of Kernel K: not important

Choice of **bandwidth** h: crucial
The local polynomial regression estimate is

$$\hat{f}_n(x) = \sum_{i=1}^{n} \ell_i(x)Y_i$$

where $$\ell(x)^T = (\ell_1(x), \ldots, \ell_n(x))$$,

$$\ell(x)^T = e_1^T(X_x^TW_xX_x)^{-1}X_x^TW_x,$$

$$e_1 = (1, 0, \ldots, 0)^T$$ and $$X_x$$ and $$W_x$$ are defined by

$$X_x = \begin{pmatrix} 1 & X_1 - x & \cdots & \frac{(X_1 - x)^p}{p!} \\ 1 & X_2 - x & \cdots & \frac{(X_2 - x)^p}{p!} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_n - x & \cdots & \frac{(X_n - x)^p}{p!} \end{pmatrix}$$

$$W_x = \begin{pmatrix} K \left(\frac{x-X_1}{h} \right) & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & K \left(\frac{x-X_n}{h} \right) \end{pmatrix}.$$
Local Polynomial Regression

Note that $\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) Y_i$ is a linear smoother. Define $\hat{Y} = (\hat{Y}_1, \ldots, \hat{Y}_n)$ where $\hat{Y}_i = \hat{f}(X_i)$. Then

$$\hat{Y} = LY$$

where L is the **smoothing matrix**:

$$L = \begin{pmatrix}
\ell_1(X_1) & \ell_2(X_1) & \cdots & \ell_n(X_1) \\
\ell_1(X_2) & \ell_2(X_2) & \cdots & \ell_n(X_2) \\
\vdots & \vdots & \ddots & \vdots \\
\ell_1(X_n) & \ell_2(X_n) & \cdots & \ell_n(X_n)
\end{pmatrix}.$$

The **effective degrees of freedom** is:

$$\nu = \text{trace}(L) = \sum_{i=1}^{n} L_{ii}.$$
Theoretical Aside

Why local linear ($p = 1$) is better than kernel ($p = 0$). Both have (approximate) variance

$$\frac{\sigma^2(x)}{g(x)nh} \int K^2(u)du$$

The kernel estimator has bias

$$h^2 \left(\frac{1}{2} f''(x) + \frac{f'(x)g'(x)}{g(x)} \right) \int u^2 K(u)du$$

whereas the local linear estimator has asymptotic bias

$$h^2 \frac{1}{2} f''(x) \int u^2 K(u)du$$

The local linear estimator is free from design bias. At the boundary points, the kernel estimator has asymptotic bias of $O(h)$ while the local linear estimator has bias $O(h^2)$.
Parametric procedures force the choice p, the number of predictors.

Nonparametric procedures force the choice of the smoothing parameter h.

Next we will discuss how this can be selected in a data-driven manner via cross-validation.
Choosing p and h

Estimate the risk

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(\hat{f}(X_i) - f(X_i))^2
$$

with the **leave-one-out cross-validation score**:

$$
CV = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{f}_{(-i)}(X_i))^2
$$

where $\hat{f}_{(-i)}$ is the estimator obtained by omitting the i^{th} pair (X_i, Y_i).
Choosing p and h

Amazing shortcut formula:

$$CV = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{f}_n(x_i)}{1 - L_{ii}} \right)^2.$$

An commonly used approximation is GCV (generalized cross-validation):

$$GCV = \frac{1}{n} \frac{1}{(1 - \frac{\nu}{n})^2} \sum_{i=1}^{n} (Y_i - \hat{f}(X_i))^2$$

$$\nu = \text{trace}(L).$$
Next, we will go over a bit of how to perform local polynomial regression in R.
Using `locfit()`

Need to include the `locfit` library:

```r
> install.packages("locfit")
> library(locfit)
> result = locfit(y~x, alpha=c(0, 1.5), deg=1)
```

`y` and `x` are vectors

the second argument to `alpha` gives the bandwidth (h)

the first argument to `alpha` specifies the **nearest neighbor fraction**, an alternative to the bandwidth

`fitted(result)` gives the **fitted values**, $\hat{f}(X_i)$

`residuals(result)` gives the **residuals**, $Y_i - \hat{f}(X_i)$
Using \texttt{locfit()}

degree=1, n=1000, sigma=0.1

\begin{align*}
\sqrt{x(1-x) \sin((2.1\pi)/(x+0.2))} \\
&\text{estimate using } h = 0.005 \\
&\text{estimate using gcv optimal } h = 0.015
\end{align*}
Using `locfit()`

degree=1, n=1000, sigma=0.1

\[
\sqrt{x(1-x) \sin((2.1\pi)/(x+0.2))}
\]

- estimate using \(h = 0.1 \)
- estimate using gcv optimal \(h = 0.015 \)
Using `locfit()`

degree=1, n=1000, sigma=0.5

\[(x + 5\exp(-4x^2))\]

- estimate using \(h = 0.05\)
- estimate using gcv optimal \(h = 0.174\)
Using `locfit()`

degree=1, n=1000, sigma=0.5

\[(x + 5 \exp(-4x^2))\]

- estimate using \(h = 0.5\)
- estimate using gcv optimal \(h = 0.174\)
Example

WMAP data, local linear fit, $h = 15$.

- estimate using $h = 15$
- estimate using gcv optimal $h = 63.012$
WMAP data, local linear fit, $h = 125$.

The image shows a graph with x and y axes, illustrating the data distribution and the fitted curves, one estimate using $h = 125$ and another using the GCV optimal $h = 63.012$. The graph suggests a central tendency around the fitted curves with data points scattered around them.
We should quantify the amount of error in our estimator for the regression function. Next we will look at how this can be done using local polynomial regression.
Let

\[\hat{\sigma}^2 = \frac{\sum_{i=1}^{n}(Y_i - \hat{f}(x_i))^2}{n - 2\nu + \tilde{\nu}} \]

where \(\nu = \text{tr}(L), \quad \tilde{\nu} = \text{tr}(L^T L) = \sum_{i=1}^{n} ||\ell(x_i)||^2. \)

If \(f \) is sufficiently smooth, then \(\hat{\sigma}^2 \) is a consistent estimator of \(\sigma^2 \).
Variance Estimation

For the WMAP data, using local linear fit.

> wmap = read.table("wmap.dat",header=T)
> opth = 63.0

> locfitwmap = locfit(wmap$Cl[1:700] ~ wmap$ell[1:700],
 alpha=c(0,opth),deg=1)
> nu = as.numeric(locfitwmap$dp[6])
> nutilde = as.numeric(locfitwmap$dp[7])

> sigmasqrhat = sum(residuals(locfitwmap)^2)/(700-2*nu+nutilde)
> sigmasqrhat
[1] 1122214

But, does not seem reasonable to assume homoscedasticity...
Variance Estimation

Allow σ to be a function of x:

$$Y_i = f(x_i) + \sigma(x_i)\epsilon_i.$$

Let $Z_i = \log((Y_i - f(x_i))^2)$ and $\delta_i = \log \epsilon_i^2$. Then,

$$Z_i = \log(\sigma^2(x_i)) + \delta_i.$$

This suggests estimating $\log \sigma^2(x)$ by regressing the log squared residuals on x.
Variance Estimation

1. Estimate $f(x)$ with any nonparametric method to get an estimate $\hat{f}_n(x)$.

2. Define $Z_i = \log(Y_i - \hat{f}_n(x_i))^2$.

3. Regress the Z_i’s on the x_i’s (again using any nonparametric method) to get an estimate $\hat{q}(x)$ of $\log \sigma^2(x)$ and let

$$\hat{\sigma}^2(x) = e^{\hat{q}(x)}.$$
Example

WMAP data, log squared residuals, local linear fit, $h = 63.0$.
Example

With local linear fit, \(h = 130 \), chosen via GCV
Example

Estimating $\sigma(x)$:
Confidence Bands

Recall that

\[\hat{f}(x) = \sum_i Y_i \ell_i(x) \]

so

\[\text{Var}(\hat{f}(x)) = \sum_i \sigma^2(X_i) \ell_i^2(x). \]

An approximate \(1 - \alpha \) confidence interval for \(f(x) \) is

\[\hat{f}(x) \pm z_{\alpha/2} \sqrt{\sum_i \hat{\sigma}^2(X_i) \ell_i^2(x)}. \]

When \(\sigma(x) \) is smooth, we can approximate

\[\sqrt{\sum_i \hat{\sigma}^2(X_i) \ell_i^2(x)} \approx \hat{\sigma}(x) \| \ell(x) \|. \]
Confidence Bands

Two caveats:

1. \hat{f} is biased so this is really an interval for $\mathbb{E}(\hat{f}(x))$. Result: bands can miss sharp peaks in the function.

2. Pointwise coverage does not imply simultaneous coverage for all x.

Solution for 2 is to replace $z_{\alpha/2}$ with a larger number (Sun and Loader 1994). \texttt{locfit()} does this for you.
> diaghat = predict.locfit(locfitwmap, where="data", what="infl")
> normell = predict.locfit(locfitwmap, where="data", what="vari")

diaghat will be $L_{ii}, i = 1, 2, \ldots, n$.
normell will be $\| \ell(X_i) \|, i = 1, 2, \ldots, n$

The Sun and Loader replacement for $z_{\alpha/2}$ is found using
kappa0(locfitwmap)$crit.val.$
95% pointwise confidence bands:
Example

95% simultaneous confidence bands:

- **estimate**
- 95% simultaneous band assuming constant variance
- 95% simultaneous band using nonconstant variance
We discuss the use of regression splines. These are a well-motivated choice of basis for constructing regression functions.
Idea: expand f as

$$f(x) = \sum_j \beta_j \psi_j(x)$$

where $\psi_1(x), \psi_2(x), \ldots$ are specially chosen, known functions. Then estimate β_j and set

$$f(x) = \sum_j \hat{\beta}_j \psi_j(x).$$

Here we consider a popular version, **splines**
Define \hat{f}_n to be the function that minimizes

$$M(\lambda) = \sum_i (Y_i - \hat{f}_n(x_i))^2 + \lambda \int (f''(x))^2 \, dx.$$

- $\lambda = 0 \implies \hat{f}_n(X_i) = Y_i$ (no smoothing)
- $\lambda = \infty \implies \hat{f}_n(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ (linear)
- $0 < \lambda < \infty \implies \hat{f}_n(x) =$ cubic spline with knots at X_i.

A **cubic spline** is a continuous function f such that

1. f is a cubic polynomial between the X_i’s
2. f has continuous first and second derivatives at the X_i’s.
Define $(z)_+ = \max\{z, 0\}$, $N = n + 4$,

\[\psi_1(x) = 1 \quad \psi_2(x) = x \quad \psi_3(x) = x^2 \quad \psi_4(x) = x^3 \]
\[\psi_5(x) = (x - X_1)_+^3 \quad \psi_6(x) = (x - X_2)_+^3 \quad \cdots \]
\[\psi_N(x) = (x - X_n)_+^3. \]

These functions form a basis for the splines: we can write

\[f(x) = \sum_{j=1}^{N} \beta_j \psi_j(x). \]

(For numerical calculations it is actually more efficient to use other spline bases.) We can thus write

\[\hat{f}_n(x) = \sum_{j=1}^{N} \hat{\beta}_j \psi_j(x), \quad (1) \]
We can now rewrite the minimization as follows:

$$\text{minimize} : \quad (Y - \Psi \beta)^T (Y - \Psi \beta) + \lambda \beta^T \Omega \beta$$

where $\Psi_{ij} = \psi_j(X_i)$ and $\Omega_{jk} = \int \psi_j''(x) \psi_k''(x) \, dx$. The value of β that minimizes this is

$$\hat{\beta} = (\Psi^T \Psi + \lambda \Omega)^{-1} \Psi^T Y.$$

The smoothing spline $\hat{f}_n(x)$ is a linear smoother, that is, there exist weights $\ell(x)$ such that $\hat{f}_n(x) = \sum_{i=1}^{n} Y_i \ell_i(x)$.
Basis functions with 5 knots.
Same span as previous slide, the **B-spline basis**, 5 knots:
> smosplresult = smooth.spline(x, y, cv=FALSE, all.knots=TRUE)

If `cv=TRUE`, then cross-validation used to choose λ; if `cv=FALSE`, gcv is used.

If `all.knots=TRUE`, then knots are placed at all data points; if `all.knots=FALSE`, then set `nknots` to specify the number of knots to be used. Using fewer knots eases the computational cost.

`predict(smosplresult)` gives fitted values.
Example

WMAP data, λ chosen using GCV.
Finally, we address the challenges of fitting regression models when the predictor x is of large dimension.
Recall: The Bias–Variance Tradeoff

For nonparametric procedures, when x is one-dimensional,

$$MISE \approx c_1 h^4 + \frac{c_2}{nh}$$

which is minimized at

$$h = O \left(\frac{1}{n^{1/5}} \right)$$

Hence,

$$MISE = O \left(\frac{1}{n^{4/5}} \right)$$

whereas, for parametric problems, when the model is correct,

$$MISE = O \left(\frac{1}{n} \right)$$
The Curse of Dimensionality

For nonparametric procedures, \textbf{when }x\textbf{ is }d\text{-dimensional,}

\[\text{MISE} \approx c_1 h^4 + \frac{c_2}{nh^d} \]

which is minimized at

\[h = O \left(\frac{1}{n^{1/(4+d)}} \right) \]

Hence,

\[\text{MISE} = O \left(\frac{1}{n^{4/(4+d)}} \right) \]

whereas, for parametric problems, \textbf{when the model is correct}, still,

\[\text{MISE} = O \left(\frac{1}{n} \right) \]
Multiple Regression

\[Y = f(X_1, X_2, \ldots, X_d) + \epsilon \]

The curse of dimensionality:
Optimal rate of convergence for \(d = 1 \) is \(n^{-4/5} \). In \(d \) dimensions the optimal rate of convergence is \(n^{-4/(4+d)} \). Thus, the sample size \(m \) required for a \(d \)-dimensional problem to have the same accuracy as a sample size \(n \) in a one-dimensional problem is \(m \propto n^{cd} \) where \(c = (4 + d)/(5d) > 0 \).

To maintain a given degree of accuracy of an estimator, the sample size must increase exponentially with the dimension \(d \).

Put another way, confidence bands get very large as the dimension \(d \) increases.
Given a nonsingular positive definite $d \times d$ bandwidth matrix H, we define

$$K_H(x) = \frac{1}{|H|^{1/2}} K(H^{-1/2}x).$$

Often, one scales each covariate to have the same mean and variance and then we use the kernel

$$h^{-d} K(\|x\|/h)$$

where K is any one-dimensional kernel. Then there is a single bandwidth parameter h.
At a target value \(x = (x_1, \ldots, x_d)^T \), the local sum of squares is given by

\[
\sum_{i=1}^{n} w_i(x) \left(Y_i - a_0 - \sum_{j=1}^{d} a_j (x_{ij} - x_j) \right)^2
\]

where

\[
w_i(x) = K(||x_i - x||/h).
\]

The estimator is \(\hat{f}_n(x) = \hat{a}_0 \hat{a} = (\hat{a}_0, \ldots, \hat{a}_d)^T \) is the value of \(a = (a_0, \ldots, a_d)^T \) that minimizes the weighted sums of squares.
The solution \hat{a} is

$$\hat{a} = (X_x^T W_x X_x)^{-1} X_x^T W_x Y$$

where

$$X_x = \begin{pmatrix}
1 & (x_{11} - x_1) & \cdots & (x_{1d} - x_d) \\
1 & (x_{21} - x_1) & \cdots & (x_{2d} - x_d) \\
\vdots & \vdots & \ddots & \vdots \\
1 & (x_{n1} - x_1) & \cdots & (x_{nd} - x_d)
\end{pmatrix}$$

and W_x is the diagonal matrix whose (i, i) element is $w_i(x)$.
A Compromise: Additive Models

\[Y = \alpha + \sum_{j=1}^{d} f_j(x_j) + \epsilon \]

Usually take \(\hat{\alpha} = \bar{Y} \). Then estimate the \(f_j \)'s by backfitting.

1. set \(\hat{\alpha} = \bar{Y} \), \(\hat{f}_1 = \cdots \hat{f}_d = 0 \).
2. Iterate until convergence: for \(j = 1, \ldots, d \):
 - Compute \(\tilde{Y}_i = Y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(X_i) \), \(i = 1, \ldots, n \).
 - Apply a smoother to \(\tilde{Y}_i \) on \(X_j \) to obtain \(\hat{f}_j \).
 - Set \(\hat{f}_j(x) \) equal to \(\hat{f}_j(x) - n^{-1} \sum_{i=1}^{n} \hat{f}_j(x_i) \).

The last step ensures that \(\sum_i \hat{f}_j(X_i) = 0 \) (identifiability).
Classic linear regression is computationally and theoretically simple.

Nonparametric procedures for regression offer increased flexibility.

Careful consideration of MISE suggests use of local polynomial fits.

Smoothing parameters can be chosen objectively.

High-dimensional data present a challenge.