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Unsupervised clustering of COMBO-17 galaxy photometry

We illustrate unsupervised clustering algorithms using a two-
dimensional color-magnitude diagram constructed from the COMBO-17 
(`Classifying Objects by Medium-Band Observations in 17 Filters') 
photometric survey of normal galaxies (Wolf et al. 2003). The R 
script below starts with the which function to filter the dataset, 
keeping only low-redshift galaxies with z < 0.3 and remove a few 
points with bad data values. Most of the original 65 variables are 
ignored, and we keep only the galaxy absolute magnitude in the blue 
band, M_B, and the ultraviolet-to-blue color index, M_{280 - M_B. 
The resulting color-magnitude diagram ( left panel) shows the well-
known concentrations of luminous red galaxies around (M_B,M_{280-
M_B) \simeq (-16,-0.2) and fainter blue galaxies around (-13,-0.9).

The clusters are more clearly seen after smoothing the point process 
with a two-dimensional kernel density estimator using kde2d in R's 
MASS library. The blue galaxies are spirals and irregular galaxies 
that have experienced recent active star formation, while the red 
galaxies are mostly ellipticals that have only older stars formed 
early in the Universe's history. Note that many galaxies have 
properties distributed around the major concentrations. For example, 
a few extremely luminous and red galaxies are seen around (-20,1.5); 
these are nearby examples of the `luminous red galaxies' that are 
very important in cosmological studies (Eisenstein et al. 2005).

While the kernel density estimator provides a valuable visualization 
of the clustering pattern, it does not assign individual galaxies to 
specific clusters. We illustrate unsupervised clustering of the 



dataset using three methods in the following R script. For the 
nonparametric procedures where we assume a Euclidean distances 
between points in the 2-space, we first standardize the variables by 
removing the means and dividing by the standard deviations.

# Unsupervised clustering of red and blue galaxies
# Color-magnitude diagram for low-redshift COMBO-17 galaxies

COMBO=read.table('http://astrostatistics.psu.edu/MSMA/datasets/
COMBO17_lowz.dat',header=T,fill=T)
dim(COMBO) ; names(COMBO)
par(mfrow=c(1,2))
plot(COMBO,pch=20,cex=0.5,xlim=c(-22,-7), ylim=c(-2,2.5),xlab='M_B 
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 galaxies (z<0.3)')

# Two-dimensional kernel-density estimator

library(MASS)
COMBO_sm=kde2d(COMBO[,1],COMBO[,2], h=c(1.6,0.4),lims = c
(-22,-7,-2,2.5), n=500)

image(COMBO_sm,col=grey(13:0/15),xlab='M_B (mag)',ylab='M_280 - M_B 
(mag)',,xlim=c(-22,-7), ylim=c(-2,2.5),xaxp=c(-20,-10,2))
text(-18,-1.2,'Blue cloud', col='blue')
text(-18,-0.8,'Green valley', col='darkgreen')
text(-10,-0.2,'Red sequence', col='red')
text(-13,1.5,'Bright cluster galaxies', col='darkred')
par(mfrow=c(1,1))

R and CRAN have a variety of agglomerative hierarchical clustering 
algorithms. We start with the most commonly used procedure, function 
hclust in base-R. The procedure runs on the matrix of pairwise 
distances between points constructed using the function dist. As the 
structures in the smoothed distribution seem roughly spherical, we 
choose the `complete linkage' definition of group locations. The 
product of hclust is a dendrogram which can be displayed using 
plclust.

# Standardize variables



Mag_std=(COMBO[,1]-mean(COMBO[,1]))/sd(COMBO[,1])
Color_std=(COMBO[,2]-mean(COMBO[,2]))/sd(COMBO[,2])
COMBO_std=cbind(Mag_std,Color_std)
plot(COMBO_std)

# Hierarchical clustering

COMBO_dist=dist(COMBO_std)
COMBO_hc=hclust(COMBO_dist,method='complete')
 # Cutting the tree at k=5 clusters
plclust(COMBO_hc,label=F)
COMBO_hc5a=rect.hclust(COMBO_hc,k=5,border='black') ; str
(COMBO_hc5a)
COMBO_hc5b=cutree(COMBO_hc,k=5) ; str(COMBO_hc5b)
plot(COMBO,pch=(COMBO_hc5b+19),cex=1.0,xlab='M_B (mag)',ylab='M_280 
- M_B (mag)',main='COMBO-17 hier clustering 
(k=5)',cex.lab=1.3,cex.axis=1.3)

There is no formal procedure to select branches of the dendrogram as 
physically valid clusters. The cophenetic correlation coefficient, a 
measure of the similarity of the hierarchical structure and the 
data, is 0.52 using functions cophenetic and cor, but this can not 
readily be converted to a probability. We investigated the tree by 
trial-and-error, and found that `cutting the tree' at $k=5$ clusters 
provides a useful result. Two procedures are shown here: 
{rect.hclust that shows rectangles in the dendrogram (top panel), 
and cutree which gives an output with individual galaxy memberships 
of the five clusters. These are shown as different symbols in the 
color-magnitude diagram of the bottom panel; the open triangles show 
the red galaxies and the open circles show the blue galaxies. These 
clusters include many outlying galaxies, and examination of smaller 
clusters in the hierarchy does not cleanly discriminate the cluster 
extents seen in the smoothed distribution seen in the earlier figure 
(left panel).

Our second clustering method attempts to alleviate this problem with 
the hierarchical clustering results by using the density as a 
starting point for the clustering algorithm. We use the DBSCAN 
(density-based cluster analysis) in CRAN package fpc (`fixed point 
clusters') which implements the procedure of Ester et al. (1996). 
DBSCAN is widely used, particularly for problems where compact 
clusters of interest are embedded in multiscale structure. The 



{dbscan function requires user input of two parameters: the minimum 
number of points within a radius (or `reach') associated with the 
clusters of interest. By trial-and-error, we found that a minimum of 
10 points within 0.3 standardized magnitude units provided a useful 
result as shown in the figure. Here only the fraction of galaxies 
lying within the regions satisfying this local density criterion are 
classified; red and blue galaxy groups are clearly discriminated, 
and intermediate galaxies are not classified.

# Density-based clustering algorithm

install.packages('fpc') ; library(fpc)
COMBO_dbs = dbscan(COMBO_std,eps=0.1,MinPts=5,method='raw')
print.dbscan(COMBO_dbs) ; COMBO_dbs$cluster
plot(COMBO[COMBO_dbs$cluster==0,], pch=20,cex=0.7,xlab='M_B 
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 density wt 
clustering',cex.lab=1.3,cex.axis=1.3)
points(COMBO[COMBO_dbs$cluster==2,],pch=2,cex=1.0)
points(COMBO[COMBO_dbs$cluster==1 | COMBO_dbs
$cluster==3,],pch=1,cex=1.0)

Our third clustering method is the well-respected parametric mclust 
(`model-based clustering') package in CRAN that fits a multivariate 
normal (MVN) mixture model by maximum-likelihood estimation using 
the EM Algorithm with Bayesian regularization (Fraley & Raftery 
2002, 2007). We run an unsupervised procedure, but the calculation 
can be initialized with the output of MVN hierarchical clustering 
and the user can specify conjugate priors for the means and 
variances. In function mclustBIC, the `VVV' model name specifies 
multivariate ellipsoidal Gaussians with arbitrary orientations. 
Model selection is performed by maximizing the Bayesian Information 
Criterion (BIC) for different number of clusters.

The model-based clustering algorithm is shown in the figure. The 
likelihood for the COMBO-17 color-magnitude diagram is maximized for 
three clusters, two of which distinguish the red and blue galaxy 
sequences. Detailed results are provided by the summary.mclustBIC 
function including the probabilities of cluster membership for each 
galaxy and the uncertainties to these probabilities.

Points lying between two clusters can be investigated using a 



visualization tool known as `shadow' and `silhouette' plots coupled 
to centroid-based partitioning cluster analysis (Leisch 2009). Each 
data point has a shadow value equal to two-times the distance to the 
closest cluster centroid divided by the sum of distances to closest 
and second-closest centroids. Points with shadow values near unity 
lie equidistant from the two clusters. Silhouette values measure the 
difference between the average dissimilarity of a point to all 
points in its own cluster to the smallest average dissimilarity to 
the points of a different cluster. Small values again indicate 
points with ill-defined cluster memberships. These plots can be 
constructed using CRAN's flexclust package.

# Model-based clustering

library(mclust)
COMBO_mclus=mclustBIC(COMBO,modelNames='VVV')
plot(COMBO_mclus,col='black')
COMBO_sum_mclus=summary.mclustBIC(COMBO_mclus,COMBO,3)
COMBO_sum_mclus$parameters ; COMBO_sum_mclus$classification
COMBO_sum_mclus$z ; COMBO_sum_mclus$uncertainty
plot(COMBO,pch=(19+COMBO_sum_mclus$classification),cex=1.0,xlab='M_B 
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 MVN model clustering 
(k=3)',cex.lab=1.3,cex.axis=1.3)

Altogether, none of the unsupervised clustering techniques showed 
the `blue cloud', `green valley', `red sequence' and `BCGs' as well 
as a simple kernel smoother.  The results of unsupervised 
clustering, including the astronomers' favorite `friends-of-friends' 
algorithm, are often unreliable in the sense that reasonable 
alternative algorithms give very different scientific results.  

+++++++++++++++++++
+++++++++++++++++++

Supervised classification of SDSS point sources

The Sloan Digital Sky Survey (SDSS) has produced some of the most 
impressive photometric catalogs in modern astronomy. A selection of 
17,000 SDSS point sources, along with training sets for three 
spectroscopically confirmed classes (main sequence plus red giant 
stars, quasars, and white dwarfs). These are 4-dimensional datasets 



with variables representing the ratios of brightness in the five 
SDSS photometric bands (u-g, g-r, r-i, and i-z). The resulting 
color-color scatterplots show distributions that cannot be well-
modeled by multinormal distributions, and distributions that are 
distinct in some variables but overlapping in others. The analysis 
here starts with the SDSS_train and SDSS_test obtained using the 
following R script.

# SDSS point sources dataset, N=17,000 (mag<21, point sources, hi-
qual)

SDSS=read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_test.csv',header=T)
dim(SDSS) ; summary(SDSS)
SDSS_test=data.frame(cbind((SDSS[,1]-SDSS[,2]),(SDSS[,2]-SDSS[,3]),
(SDSS[,3]-SDSS[,4]),(SDSS[,4]-SDSS[,5])))
names(SDSS_test)=c('u_g','g_r','r_i','i_z')
str(SDSS_test)

par(mfrow=c(1,3))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-
g (mag)',ylab='g-r (mag)')

plot(SDSS_test[,2],SDSS_test[,3],xlim=c(-0.7,1.8),ylim=c
(-0.7,1.8),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='g-
r (mag)',ylab='r-i (mag)')

plot(SDSS_test[,3],SDSS_test[,4],xlim=c(-0.7,1.8),ylim=c
(-1.1,1.3),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='r-
i (mag)',ylab='i-z (mag)') 
par(mfrow=c(1,1))

# Quasar training set, N=2000 (Class 1)

temp1 = read.table('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_QSO.dat', header=T) 
dim(temp1) ; summary(temp1)
qso = cbind(temp1[,c(5,7,9,11,13,6,8,10,12,14,2,3)]) # set same 
variables in both datasets



bad_phot_qso = which(qso[,1:6] > 21.0 | qso[,9]==0)
qso1 = qso[-bad_phot_qso,]
qso2 = qso1[1:2000,] 
qso3=cbind((qso2[,1]-qso2[,2]),(qso2[,2]-qso2[,3]),(qso2[,3]-qso2[,
4]),(qso2[,4]-qso2[,5]))
qso_train=data.frame(cbind(qso3,rep(1,length(qso2[,1]))))
names(qso_train)=c('u_g','g_r','r_i','i_z','Class')
dim(qso_train) ; summary(qso_train)

# Star training set, N=5000 (Class 2)

temp2 = read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_stars.csv', header=T)
dim(temp2) ; summary(temp2) 
star=cbind((temp2[,1]-temp2[,2]),(temp2[,2]-temp2[,3]),(temp2[,3]-
temp2[,4]),(temp2[,4]-temp2[,5]))
star_train=data.frame(cbind(star,rep(2,length(star[,1]))))
names(star_train)=c('u_g','g_r','r_i','i_z','Class')
dim(star_train) ; summary(star_train)

# White dwarf training set, N=2000 (Class 3)

temp3 = read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_wd.csv', header=T)
dim(temp3) ; summary(temp3)
temp3=na.omit(temp3)
wd =cbind((temp3[1:2000,2]-temp3[1:2000,3]),(temp3[1:2000,3]-temp3
[1:2000,4]),(temp3[1:2000,4]-temp3[1:2000,5]),(temp3[1:2000,5]-temp3
[1:2000,6]))
wd_train=data.frame(cbind(wd,rep(3,length(wd[,1]))))
names(wd_train)=c('u_g','g_r','r_i','i_z','Class')
dim(wd_train) ; summary(wd_train)

# Combined training set (9000 objects)

SDSS_train=data.frame(rbind(qso_train,star_train,wd_train))
names(SDSS_train)=c('u_g','g_r','r_i','i_z','Class')
str(SDSS_train)

par(mfrow=c(1,3))
plot(SDSS_train[,1],SDSS_train[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_train[,



5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g 
(mag)',ylab='g-r (mag)')

legend(-0.5,1.7,c('QSO','MS + RG','WD'), pch=20,col=c
('black','red','green'),cex=1.8)

plot(SDSS_train[,2],SDSS_train[,3],xlim=c(-0.7,1.8),ylim=c
(-0.7,1.8),pch=20, col=SDSS_train[,
5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='g-r 
(mag)',ylab='r-i (mag)')

plot(SDSS_train[,3],SDSS_train[,4],xlim=c(-0.7,1.8),ylim=c
(-1.1,1.3),pch=20, col=SDSS_train[,
5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='r-i 
(mag)',ylab='i-z (mag)')
par(mfrow=c(1,1))

Unsupervised clustering fails to recover the known distributions in 
the SDSS photometric distribution. We show, for example, the result 
of a k-means partitioning in the figure. The k-means partitioning 
with divides the main sequence into segments, even though there are 
no gaps in the distribution. Even a supervised k-means partitioning 
with three initial cluster roughly centered on the three training 
classes does not lead to a correct result. Similar problems arise 
when unsupervised hierarchical clustering (R function hclust) or 
model-based clustering (function Mclust in package mclust) are 
applied to the SDSS distributions.

# Unsupervised k-means partitioning

SDSS_kmean=kmeans(SDSS_test,6)
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.5,3),ylim=c
(-0.5,2),pch=20,col=SDSS_kmean$cluster, cex=0.6, 
cex.lab=1.3,cex.axis=1.3,cex.main=1.3,main='SDSS unsupervised k-
means',xlab='u-g (mag)',ylab='g-r (mag)')

Discrimination analysis and k-nn classification

The classification of SDSS objects is much improved when the 
training set used. We show here the result of linear discriminant 
analysis (LDA) using function lda in base-R's MASS package. The LDA 



classification from the training set is applied to the test set 
using R's predict function. The figure (top left panel) shows the 
result for the test sample; a similar plot can be inspected for the 
training sample.

Discriminant analysis gives a reasonable classification of stars, 
quasars and white dwarfs, with no difficulty following the elongated 
and curved distributions in 4-space. However, some classification 
errors are evident: a few main sequence stars are mislabeled as 
quasars (black dots), and the white dwarf class (green dots) is 
truncated by the quasar distribution. The closely related quadratic 
discriminate analysis using function qda has additional problems, 
classifying some main sequence and red giant stars as white dwarfs.

CRAN package class implements a k-nearest neighbors classifier where 
a grid of classifications is constructed from the training set. The 
application to the SDSS test set is shown in the figure (top right 
panel) and shows good performance. Here we use k=4 neighbors, but 
the result is not sensitive to a range of k values.

We consider two ways to examine the reliability of the these 
classifiers by applying it to the training set. First, a cross-
validation experiment can be made (e.g., using function knn.cv) 
where leave-one-out resamples of the test dataset give posterior 
probabilities for the classification of each object. Second, the 
class obtained by the classified can be plotted against the true 
class known for the training set objects. We show this in the bottom 
panels of the figure; the LDA clearly makes more misclassifications 
than the k-nn algorithm. For k-nn, misclassification of stars (Class 
2) is rare (0.1%) but confusion between quasars (Class 1) and white 
dwarfs (Class 3) occurs in about 2% of cases. This is understandable 
given the overlap in their distributions in color-color plots. Note 
the use of R's jitter function to facilitate visualization of 
categorical data for scatterplots.

# Linear discriminant analysis

library(MASS)
SDSS_lda=lda(SDSS_train[,1:4],as.factor(SDSS_train[,5]))
SDSS_train_lda=predict(SDSS_lda,SDSS_train[,1:4])
SDSS_test_lda=predict(SDSS_lda,SDSS_test[,1:4])



par(mfrow=c(1,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_test_lda$class, 
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r 
(mag)')

# k-nn classification

install.packages('class') ; library(class)
SDSS_knn4 = knn(SDSS_train[,1:4],SDSS_test,SDSS_train[,
5],k=4,prob=T)
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_knn4, 
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r 
(mag)') 
par(mfrow=c(1,1))

# Validation of k-nn classification

SDSS_train_lda_cv=lda(SDSS_train[,1:4],as.factor(SDSS_train[,
5]),CV=T)

SDSS_train_lda=lda(SDSS_train[,1:4],as.factor(SDSS_train[,5]))
SDSS_train_knn4 = knn(SDSS_train[,1:4],SDSS_train[,1:4],SDSS_train[,
5],k=4)
par(mfrow=c(1,2))
plot(jitter(as.numeric(SDSS_train_lda$class),factor=0.5),jitter
(as.numeric(SDSS_train[,5]),factor=0.5),pch=20,cex=1.0,xlab='LDA 
class',ylab='True class',cex.lab=1.3,cex.axis=1.3, xaxp=c
(1,3,2),yaxp=c(1,3,2))
plot(jitter(as.numeric(SDSS_train_knn4),factor=0.5),jitter
(as.numeric(SDSS_train[,5]),factor=0.5),pch=20,cex=1.0,xlab='k-nn 
class',ylab='True class',cex.lab=1.3,cex.axis=1.3, xaxp=c
(1,3,2),yaxp=c(1,3,2))
par(mfrow=c(1,1))

# Single layer neutral network

install.packages('nnet') ; library(nnet)
options(size=100, maxit=1000) 
SDSS_nnet <- multinom(as.factor(SDSS_train[,5]) ~ SDSS_train[,1] + 



SDSS_train[,2] +
SDSS_train[,3] + SDSS_train[,4], data=SDSS_train) 
SDSS_train_nnet <- predict(SDSS_nnet,SDSS_train[,1:4]) 
plot(jitter(as.numeric(SDSS_train_nnet), factor=0.5), jitter
(as.numeric(SDSS_train[,5]), factor=0.5), pch=20, cex=0.5, 
xlab='nnet class', ylab='True class', xaxp=c(1,3,2),yaxp=c(1,3,2))

Machine learning classifiers

Machine learning classifiers perform well for this problem. In the 
following R script, we apply CART using rpart (acronym for 
`recursive partitioning and regression trees') in base-R's rpart 
library, and the Support Vector Machine {svm implemented in CRAN's 
e1071 package. The procedure for running these and similar 
classifiers is straightforward. The `model' is produced by rpart or 
svm with a formula like `Known_classes ~ .' to the training set. 
Examining the model using summary and str shows that the classifier 
output can be quite complicated; e.g., CART will give details on the 
decision tree nodes while SVM will give details on the support 
vectors. But the model predictions can be automatically applied to 
the training and test datasets using R's predict function without 
understanding these details.

We plot the predicted classes against the known classes for the 
training set in the figure. CART does not perform as well as the k-
nn shown above, but the SVM classifier does a better job. The figure 
shows the CART tree with the splits labeled, and the next figure 
shows how much of the variance is reduced by each split of the data.

Considering the SVM classification as the best available, we show 
the final classifications of the test SDSS sample in the figure, and 
write them to an ASCII output file SDSS_test_svm.out. Note that R's 
write function produces tables that are difficult to read; we use 
the format function and other options in write to improve the 
appearance of the ASCII output.

# Classification And Regression Tree model, prediction and 
validation

library('rpart')



SDSS_rpart_mod = rpart(SDSS_train[,5] ~.,data=SDSS_train[,1:4])
SDSS_rpart_test_pred = predict(SDSS_rpart_mod, SDSS_test)
SDSS_rpart_train_pred = predict(SDSS_rpart_mod, SDSS_train)
summary(SDSS_rpart_mod) ; str(SDSS_rpart_mod)
par(mfrow=c(1,2))
plot(jitter(SDSS_rpart_train_pred,factor=5),jitter(SDSS_train[,
5]),pch=20,cex=0.3,cex.axis=1.5, cex.lab=1.5,xlab='CART 
class',ylab='True class',yaxp=c(1,3,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=round(SDSS_rpart_test_pred), 
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r 
(mag)')
plot(SDSS_rpart_mod) ; text(SDSS_rpart_mod)
plotcp(SDSS_rpart_mod,lwd=2,cex.axis=1.3,cex.lab=1.3)

# Support Vector Machine model, prediction and validation

install.packages('e1071') ; library(e1071)
SDSS_svm_mod = svm(SDSS_train[,5] ~.,data=SDSS_train[,1:4],cost = 
100, gamma = 1)
summary(SDSS_svm_mod) ; str(SDSS_svm_mod) 
SDSS_svm_test_pred = predict(SDSS_svm_mod, SDSS_test)
SDSS_svm_train_pred = predict(SDSS_svm_mod, SDSS_train)
par(mfrow=c(1,2))
plot(SDSS_svm_train_pred,jitter(SDSS_train[,
5]),pch=20,cex=0.3,cex.axis=1.5, cex.lab=1.5,xlab='SVM 
class',ylab='True class',yaxp=c(1,3,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=round(SDSS_svm_test_pred), 
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r 
(mag)')

# 23 new R functions are used in this tutorial:
# text, cbind, dist, hclust, plclust, rect.hclust, dbscan, 
print.dbscan, 
# points, mclustBIC, read.csv, data.frame, which, kmeans, lda, 
predict, 
# knn, as.numeric, jitter, multinom, as.factor, rpart, svm 


