
STScI Astrostatistics
R tutorials
Eric Feigelson (Penn State)
November 2011

SESSION 2
Multivariate clustering and classification

Unsupervised clustering of COMBO-17 galaxy photometry

We illustrate unsupervised clustering algorithms using a two-
dimensional color-magnitude diagram constructed from the COMBO-17
(`Classifying Objects by Medium-Band Observations in 17 Filters')
photometric survey of normal galaxies (Wolf et al. 2003). The R
script below starts with the which function to filter the dataset,
keeping only low-redshift galaxies with z < 0.3 and remove a few
points with bad data values. Most of the original 65 variables are
ignored, and we keep only the galaxy absolute magnitude in the blue
band, M_B, and the ultraviolet-to-blue color index, M_{280 - M_B.
The resulting color-magnitude diagram (left panel) shows the well-
known concentrations of luminous red galaxies around (M_B,M_{280-
M_B) \simeq (-16,-0.2) and fainter blue galaxies around (-13,-0.9).

The clusters are more clearly seen after smoothing the point process
with a two-dimensional kernel density estimator using kde2d in R's
MASS library. The blue galaxies are spirals and irregular galaxies
that have experienced recent active star formation, while the red
galaxies are mostly ellipticals that have only older stars formed
early in the Universe's history. Note that many galaxies have
properties distributed around the major concentrations. For example,
a few extremely luminous and red galaxies are seen around (-20,1.5);
these are nearby examples of the `luminous red galaxies' that are
very important in cosmological studies (Eisenstein et al. 2005).

While the kernel density estimator provides a valuable visualization
of the clustering pattern, it does not assign individual galaxies to
specific clusters. We illustrate unsupervised clustering of the

dataset using three methods in the following R script. For the
nonparametric procedures where we assume a Euclidean distances
between points in the 2-space, we first standardize the variables by
removing the means and dividing by the standard deviations.

Unsupervised clustering of red and blue galaxies
Color-magnitude diagram for low-redshift COMBO-17 galaxies

COMBO=read.table('http://astrostatistics.psu.edu/MSMA/datasets/
COMBO17_lowz.dat',header=T,fill=T)
dim(COMBO) ; names(COMBO)
par(mfrow=c(1,2))
plot(COMBO,pch=20,cex=0.5,xlim=c(-22,-7), ylim=c(-2,2.5),xlab='M_B
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 galaxies (z<0.3)')

Two-dimensional kernel-density estimator

library(MASS)
COMBO_sm=kde2d(COMBO[,1],COMBO[,2], h=c(1.6,0.4),lims = c
(-22,-7,-2,2.5), n=500)

image(COMBO_sm,col=grey(13:0/15),xlab='M_B (mag)',ylab='M_280 - M_B
(mag)',,xlim=c(-22,-7), ylim=c(-2,2.5),xaxp=c(-20,-10,2))
text(-18,-1.2,'Blue cloud', col='blue')
text(-18,-0.8,'Green valley', col='darkgreen')
text(-10,-0.2,'Red sequence', col='red')
text(-13,1.5,'Bright cluster galaxies', col='darkred')
par(mfrow=c(1,1))

R and CRAN have a variety of agglomerative hierarchical clustering
algorithms. We start with the most commonly used procedure, function
hclust in base-R. The procedure runs on the matrix of pairwise
distances between points constructed using the function dist. As the
structures in the smoothed distribution seem roughly spherical, we
choose the `complete linkage' definition of group locations. The
product of hclust is a dendrogram which can be displayed using
plclust.

Standardize variables

Mag_std=(COMBO[,1]-mean(COMBO[,1]))/sd(COMBO[,1])
Color_std=(COMBO[,2]-mean(COMBO[,2]))/sd(COMBO[,2])
COMBO_std=cbind(Mag_std,Color_std)
plot(COMBO_std)

Hierarchical clustering

COMBO_dist=dist(COMBO_std)
COMBO_hc=hclust(COMBO_dist,method='complete')
 # Cutting the tree at k=5 clusters
plclust(COMBO_hc,label=F)
COMBO_hc5a=rect.hclust(COMBO_hc,k=5,border='black') ; str
(COMBO_hc5a)
COMBO_hc5b=cutree(COMBO_hc,k=5) ; str(COMBO_hc5b)
plot(COMBO,pch=(COMBO_hc5b+19),cex=1.0,xlab='M_B (mag)',ylab='M_280
- M_B (mag)',main='COMBO-17 hier clustering
(k=5)',cex.lab=1.3,cex.axis=1.3)

There is no formal procedure to select branches of the dendrogram as
physically valid clusters. The cophenetic correlation coefficient, a
measure of the similarity of the hierarchical structure and the
data, is 0.52 using functions cophenetic and cor, but this can not
readily be converted to a probability. We investigated the tree by
trial-and-error, and found that `cutting the tree' at $k=5$ clusters
provides a useful result. Two procedures are shown here:
{rect.hclust that shows rectangles in the dendrogram (top panel),
and cutree which gives an output with individual galaxy memberships
of the five clusters. These are shown as different symbols in the
color-magnitude diagram of the bottom panel; the open triangles show
the red galaxies and the open circles show the blue galaxies. These
clusters include many outlying galaxies, and examination of smaller
clusters in the hierarchy does not cleanly discriminate the cluster
extents seen in the smoothed distribution seen in the earlier figure
(left panel).

Our second clustering method attempts to alleviate this problem with
the hierarchical clustering results by using the density as a
starting point for the clustering algorithm. We use the DBSCAN
(density-based cluster analysis) in CRAN package fpc (`fixed point
clusters') which implements the procedure of Ester et al. (1996).
DBSCAN is widely used, particularly for problems where compact
clusters of interest are embedded in multiscale structure. The

{dbscan function requires user input of two parameters: the minimum
number of points within a radius (or `reach') associated with the
clusters of interest. By trial-and-error, we found that a minimum of
10 points within 0.3 standardized magnitude units provided a useful
result as shown in the figure. Here only the fraction of galaxies
lying within the regions satisfying this local density criterion are
classified; red and blue galaxy groups are clearly discriminated,
and intermediate galaxies are not classified.

Density-based clustering algorithm

install.packages('fpc') ; library(fpc)
COMBO_dbs = dbscan(COMBO_std,eps=0.1,MinPts=5,method='raw')
print.dbscan(COMBO_dbs) ; COMBO_dbs$cluster
plot(COMBO[COMBO_dbs$cluster==0,], pch=20,cex=0.7,xlab='M_B
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 density wt
clustering',cex.lab=1.3,cex.axis=1.3)
points(COMBO[COMBO_dbs$cluster==2,],pch=2,cex=1.0)
points(COMBO[COMBO_dbs$cluster==1 | COMBO_dbs
$cluster==3,],pch=1,cex=1.0)

Our third clustering method is the well-respected parametric mclust
(`model-based clustering') package in CRAN that fits a multivariate
normal (MVN) mixture model by maximum-likelihood estimation using
the EM Algorithm with Bayesian regularization (Fraley & Raftery
2002, 2007). We run an unsupervised procedure, but the calculation
can be initialized with the output of MVN hierarchical clustering
and the user can specify conjugate priors for the means and
variances. In function mclustBIC, the `VVV' model name specifies
multivariate ellipsoidal Gaussians with arbitrary orientations.
Model selection is performed by maximizing the Bayesian Information
Criterion (BIC) for different number of clusters.

The model-based clustering algorithm is shown in the figure. The
likelihood for the COMBO-17 color-magnitude diagram is maximized for
three clusters, two of which distinguish the red and blue galaxy
sequences. Detailed results are provided by the summary.mclustBIC
function including the probabilities of cluster membership for each
galaxy and the uncertainties to these probabilities.

Points lying between two clusters can be investigated using a

visualization tool known as `shadow' and `silhouette' plots coupled
to centroid-based partitioning cluster analysis (Leisch 2009). Each
data point has a shadow value equal to two-times the distance to the
closest cluster centroid divided by the sum of distances to closest
and second-closest centroids. Points with shadow values near unity
lie equidistant from the two clusters. Silhouette values measure the
difference between the average dissimilarity of a point to all
points in its own cluster to the smallest average dissimilarity to
the points of a different cluster. Small values again indicate
points with ill-defined cluster memberships. These plots can be
constructed using CRAN's flexclust package.

Model-based clustering

library(mclust)
COMBO_mclus=mclustBIC(COMBO,modelNames='VVV')
plot(COMBO_mclus,col='black')
COMBO_sum_mclus=summary.mclustBIC(COMBO_mclus,COMBO,3)
COMBO_sum_mclus$parameters ; COMBO_sum_mclus$classification
COMBO_sum_mclus$z ; COMBO_sum_mclus$uncertainty
plot(COMBO,pch=(19+COMBO_sum_mclus$classification),cex=1.0,xlab='M_B
(mag)',ylab='M_280 - M_B (mag)',main='COMBO-17 MVN model clustering
(k=3)',cex.lab=1.3,cex.axis=1.3)

Altogether, none of the unsupervised clustering techniques showed
the `blue cloud', `green valley', `red sequence' and `BCGs' as well
as a simple kernel smoother. The results of unsupervised
clustering, including the astronomers' favorite `friends-of-friends'
algorithm, are often unreliable in the sense that reasonable
alternative algorithms give very different scientific results.

+++++++++++++++++++
+++++++++++++++++++

Supervised classification of SDSS point sources

The Sloan Digital Sky Survey (SDSS) has produced some of the most
impressive photometric catalogs in modern astronomy. A selection of
17,000 SDSS point sources, along with training sets for three
spectroscopically confirmed classes (main sequence plus red giant
stars, quasars, and white dwarfs). These are 4-dimensional datasets

with variables representing the ratios of brightness in the five
SDSS photometric bands (u-g, g-r, r-i, and i-z). The resulting
color-color scatterplots show distributions that cannot be well-
modeled by multinormal distributions, and distributions that are
distinct in some variables but overlapping in others. The analysis
here starts with the SDSS_train and SDSS_test obtained using the
following R script.

SDSS point sources dataset, N=17,000 (mag<21, point sources, hi-
qual)

SDSS=read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_test.csv',header=T)
dim(SDSS) ; summary(SDSS)
SDSS_test=data.frame(cbind((SDSS[,1]-SDSS[,2]),(SDSS[,2]-SDSS[,3]),
(SDSS[,3]-SDSS[,4]),(SDSS[,4]-SDSS[,5])))
names(SDSS_test)=c('u_g','g_r','r_i','i_z')
str(SDSS_test)

par(mfrow=c(1,3))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-
g (mag)',ylab='g-r (mag)')

plot(SDSS_test[,2],SDSS_test[,3],xlim=c(-0.7,1.8),ylim=c
(-0.7,1.8),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='g-
r (mag)',ylab='r-i (mag)')

plot(SDSS_test[,3],SDSS_test[,4],xlim=c(-0.7,1.8),ylim=c
(-1.1,1.3),pch=20, cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='r-
i (mag)',ylab='i-z (mag)')
par(mfrow=c(1,1))

Quasar training set, N=2000 (Class 1)

temp1 = read.table('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_QSO.dat', header=T)
dim(temp1) ; summary(temp1)
qso = cbind(temp1[,c(5,7,9,11,13,6,8,10,12,14,2,3)]) # set same
variables in both datasets

bad_phot_qso = which(qso[,1:6] > 21.0 | qso[,9]==0)
qso1 = qso[-bad_phot_qso,]
qso2 = qso1[1:2000,]
qso3=cbind((qso2[,1]-qso2[,2]),(qso2[,2]-qso2[,3]),(qso2[,3]-qso2[,
4]),(qso2[,4]-qso2[,5]))
qso_train=data.frame(cbind(qso3,rep(1,length(qso2[,1]))))
names(qso_train)=c('u_g','g_r','r_i','i_z','Class')
dim(qso_train) ; summary(qso_train)

Star training set, N=5000 (Class 2)

temp2 = read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_stars.csv', header=T)
dim(temp2) ; summary(temp2)
star=cbind((temp2[,1]-temp2[,2]),(temp2[,2]-temp2[,3]),(temp2[,3]-
temp2[,4]),(temp2[,4]-temp2[,5]))
star_train=data.frame(cbind(star,rep(2,length(star[,1]))))
names(star_train)=c('u_g','g_r','r_i','i_z','Class')
dim(star_train) ; summary(star_train)

White dwarf training set, N=2000 (Class 3)

temp3 = read.csv('http://astrostatistics.psu.edu/MSMA/datasets/
SDSS_wd.csv', header=T)
dim(temp3) ; summary(temp3)
temp3=na.omit(temp3)
wd =cbind((temp3[1:2000,2]-temp3[1:2000,3]),(temp3[1:2000,3]-temp3
[1:2000,4]),(temp3[1:2000,4]-temp3[1:2000,5]),(temp3[1:2000,5]-temp3
[1:2000,6]))
wd_train=data.frame(cbind(wd,rep(3,length(wd[,1]))))
names(wd_train)=c('u_g','g_r','r_i','i_z','Class')
dim(wd_train) ; summary(wd_train)

Combined training set (9000 objects)

SDSS_train=data.frame(rbind(qso_train,star_train,wd_train))
names(SDSS_train)=c('u_g','g_r','r_i','i_z','Class')
str(SDSS_train)

par(mfrow=c(1,3))
plot(SDSS_train[,1],SDSS_train[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_train[,

5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g
(mag)',ylab='g-r (mag)')

legend(-0.5,1.7,c('QSO','MS + RG','WD'), pch=20,col=c
('black','red','green'),cex=1.8)

plot(SDSS_train[,2],SDSS_train[,3],xlim=c(-0.7,1.8),ylim=c
(-0.7,1.8),pch=20, col=SDSS_train[,
5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='g-r
(mag)',ylab='r-i (mag)')

plot(SDSS_train[,3],SDSS_train[,4],xlim=c(-0.7,1.8),ylim=c
(-1.1,1.3),pch=20, col=SDSS_train[,
5],cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='r-i
(mag)',ylab='i-z (mag)')
par(mfrow=c(1,1))

Unsupervised clustering fails to recover the known distributions in
the SDSS photometric distribution. We show, for example, the result
of a k-means partitioning in the figure. The k-means partitioning
with divides the main sequence into segments, even though there are
no gaps in the distribution. Even a supervised k-means partitioning
with three initial cluster roughly centered on the three training
classes does not lead to a correct result. Similar problems arise
when unsupervised hierarchical clustering (R function hclust) or
model-based clustering (function Mclust in package mclust) are
applied to the SDSS distributions.

Unsupervised k-means partitioning

SDSS_kmean=kmeans(SDSS_test,6)
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.5,3),ylim=c
(-0.5,2),pch=20,col=SDSS_kmean$cluster, cex=0.6,
cex.lab=1.3,cex.axis=1.3,cex.main=1.3,main='SDSS unsupervised k-
means',xlab='u-g (mag)',ylab='g-r (mag)')

Discrimination analysis and k-nn classification

The classification of SDSS objects is much improved when the
training set used. We show here the result of linear discriminant
analysis (LDA) using function lda in base-R's MASS package. The LDA

classification from the training set is applied to the test set
using R's predict function. The figure (top left panel) shows the
result for the test sample; a similar plot can be inspected for the
training sample.

Discriminant analysis gives a reasonable classification of stars,
quasars and white dwarfs, with no difficulty following the elongated
and curved distributions in 4-space. However, some classification
errors are evident: a few main sequence stars are mislabeled as
quasars (black dots), and the white dwarf class (green dots) is
truncated by the quasar distribution. The closely related quadratic
discriminate analysis using function qda has additional problems,
classifying some main sequence and red giant stars as white dwarfs.

CRAN package class implements a k-nearest neighbors classifier where
a grid of classifications is constructed from the training set. The
application to the SDSS test set is shown in the figure (top right
panel) and shows good performance. Here we use k=4 neighbors, but
the result is not sensitive to a range of k values.

We consider two ways to examine the reliability of the these
classifiers by applying it to the training set. First, a cross-
validation experiment can be made (e.g., using function knn.cv)
where leave-one-out resamples of the test dataset give posterior
probabilities for the classification of each object. Second, the
class obtained by the classified can be plotted against the true
class known for the training set objects. We show this in the bottom
panels of the figure; the LDA clearly makes more misclassifications
than the k-nn algorithm. For k-nn, misclassification of stars (Class
2) is rare (0.1%) but confusion between quasars (Class 1) and white
dwarfs (Class 3) occurs in about 2% of cases. This is understandable
given the overlap in their distributions in color-color plots. Note
the use of R's jitter function to facilitate visualization of
categorical data for scatterplots.

Linear discriminant analysis

library(MASS)
SDSS_lda=lda(SDSS_train[,1:4],as.factor(SDSS_train[,5]))
SDSS_train_lda=predict(SDSS_lda,SDSS_train[,1:4])
SDSS_test_lda=predict(SDSS_lda,SDSS_test[,1:4])

par(mfrow=c(1,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_test_lda$class,
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r
(mag)')

k-nn classification

install.packages('class') ; library(class)
SDSS_knn4 = knn(SDSS_train[,1:4],SDSS_test,SDSS_train[,
5],k=4,prob=T)
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=SDSS_knn4,
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r
(mag)')
par(mfrow=c(1,1))

Validation of k-nn classification

SDSS_train_lda_cv=lda(SDSS_train[,1:4],as.factor(SDSS_train[,
5]),CV=T)

SDSS_train_lda=lda(SDSS_train[,1:4],as.factor(SDSS_train[,5]))
SDSS_train_knn4 = knn(SDSS_train[,1:4],SDSS_train[,1:4],SDSS_train[,
5],k=4)
par(mfrow=c(1,2))
plot(jitter(as.numeric(SDSS_train_lda$class),factor=0.5),jitter
(as.numeric(SDSS_train[,5]),factor=0.5),pch=20,cex=1.0,xlab='LDA
class',ylab='True class',cex.lab=1.3,cex.axis=1.3, xaxp=c
(1,3,2),yaxp=c(1,3,2))
plot(jitter(as.numeric(SDSS_train_knn4),factor=0.5),jitter
(as.numeric(SDSS_train[,5]),factor=0.5),pch=20,cex=1.0,xlab='k-nn
class',ylab='True class',cex.lab=1.3,cex.axis=1.3, xaxp=c
(1,3,2),yaxp=c(1,3,2))
par(mfrow=c(1,1))

Single layer neutral network

install.packages('nnet') ; library(nnet)
options(size=100, maxit=1000)
SDSS_nnet <- multinom(as.factor(SDSS_train[,5]) ~ SDSS_train[,1] +

SDSS_train[,2] +
SDSS_train[,3] + SDSS_train[,4], data=SDSS_train)
SDSS_train_nnet <- predict(SDSS_nnet,SDSS_train[,1:4])
plot(jitter(as.numeric(SDSS_train_nnet), factor=0.5), jitter
(as.numeric(SDSS_train[,5]), factor=0.5), pch=20, cex=0.5,
xlab='nnet class', ylab='True class', xaxp=c(1,3,2),yaxp=c(1,3,2))

Machine learning classifiers

Machine learning classifiers perform well for this problem. In the
following R script, we apply CART using rpart (acronym for
`recursive partitioning and regression trees') in base-R's rpart
library, and the Support Vector Machine {svm implemented in CRAN's
e1071 package. The procedure for running these and similar
classifiers is straightforward. The `model' is produced by rpart or
svm with a formula like `Known_classes ~ .' to the training set.
Examining the model using summary and str shows that the classifier
output can be quite complicated; e.g., CART will give details on the
decision tree nodes while SVM will give details on the support
vectors. But the model predictions can be automatically applied to
the training and test datasets using R's predict function without
understanding these details.

We plot the predicted classes against the known classes for the
training set in the figure. CART does not perform as well as the k-
nn shown above, but the SVM classifier does a better job. The figure
shows the CART tree with the splits labeled, and the next figure
shows how much of the variance is reduced by each split of the data.

Considering the SVM classification as the best available, we show
the final classifications of the test SDSS sample in the figure, and
write them to an ASCII output file SDSS_test_svm.out. Note that R's
write function produces tables that are difficult to read; we use
the format function and other options in write to improve the
appearance of the ASCII output.

Classification And Regression Tree model, prediction and
validation

library('rpart')

SDSS_rpart_mod = rpart(SDSS_train[,5] ~.,data=SDSS_train[,1:4])
SDSS_rpart_test_pred = predict(SDSS_rpart_mod, SDSS_test)
SDSS_rpart_train_pred = predict(SDSS_rpart_mod, SDSS_train)
summary(SDSS_rpart_mod) ; str(SDSS_rpart_mod)
par(mfrow=c(1,2))
plot(jitter(SDSS_rpart_train_pred,factor=5),jitter(SDSS_train[,
5]),pch=20,cex=0.3,cex.axis=1.5, cex.lab=1.5,xlab='CART
class',ylab='True class',yaxp=c(1,3,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=round(SDSS_rpart_test_pred),
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r
(mag)')
plot(SDSS_rpart_mod) ; text(SDSS_rpart_mod)
plotcp(SDSS_rpart_mod,lwd=2,cex.axis=1.3,cex.lab=1.3)

Support Vector Machine model, prediction and validation

install.packages('e1071') ; library(e1071)
SDSS_svm_mod = svm(SDSS_train[,5] ~.,data=SDSS_train[,1:4],cost =
100, gamma = 1)
summary(SDSS_svm_mod) ; str(SDSS_svm_mod)
SDSS_svm_test_pred = predict(SDSS_svm_mod, SDSS_test)
SDSS_svm_train_pred = predict(SDSS_svm_mod, SDSS_train)
par(mfrow=c(1,2))
plot(SDSS_svm_train_pred,jitter(SDSS_train[,
5]),pch=20,cex=0.3,cex.axis=1.5, cex.lab=1.5,xlab='SVM
class',ylab='True class',yaxp=c(1,3,2))
plot(SDSS_test[,1],SDSS_test[,2],xlim=c(-0.7,3),ylim=c
(-0.7,1.8),pch=20, col=round(SDSS_svm_test_pred),
cex=0.6,cex.lab=1.5,cex.axis=1.5,main='',xlab='u-g (mag)',ylab='g-r
(mag)')

23 new R functions are used in this tutorial:
text, cbind, dist, hclust, plclust, rect.hclust, dbscan,
print.dbscan,
points, mclustBIC, read.csv, data.frame, which, kmeans, lda,
predict,
knn, as.numeric, jitter, multinom, as.factor, rpart, svm

