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Multivariate analysis: The statistical analysis

of data containing observations on two or more

variables each measured on a set of objects or

cases.

C. Wolf, K. Meisenheimer, M. Kleinheinrich, A. Borch,

S. Dye, M. Gray, L. Wisotzki, E. F. Bell, H.-W. Rix, A.

Cimatti, G. Hasinger, and G. Szokoly: “A catalogue of

the Chandra Deep Field South with multi-colour classi-

fication and photometric redshifts from COMBO-17,”

Astron. & Astrophys., 2004.

65 variables: Rmag, e.Rmag, ApDRmag, mu-

max, Mcz, e.Mcz, MCzml, . . ., IFD, e.IFD

63,501 objects: galaxies

http://astrostatistics.psu.edu/datasets/COMBO17.dat

2



Rmag mumax Mcz MCzml chi2red UjMAG BjMAG VjMAG
2 5 6 8 9 10 12 14

24.995 24.214 0.832 1.400 0.64 -17.67 -17.54 -17.76
25.013 25.303 0.927 0.864 0.41 -18.28 -17.86 -18.20
24.246 23.511 1.202 1.217 0.92 -19.75 -19.91 -20.41
25.203 24.948 0.912 0.776 0.39 -17.83 -17.39 -17.67
25.504 24.934 0.848 1.330 1.45 -17.69 -18.40 -19.37
23.740 24.609 0.882 0.877 0.52 -19.22 -18.11 -18.70
25.706 25.271 0.896 0.870 1.31 -17.09 -16.06 -16.23
25.139 25.376 0.930 0.877 1.84 -16.87 -16.49 -17.01
24.699 24.611 0.774 0.821 1.03 -17.67 -17.68 -17.87
24.849 24.264 0.062 0.055 0.55 -11.63 -11.15 -11.32
25.309 25.598 0.874 0.878 1.14 -17.61 -16.90 -17.58
24.091 24.064 0.173 0.193 1.12 -13.76 -13.99 -14.41
25.219 25.050 1.109 1.400 1.76 -18.57 -18.49 -18.76
26.269 25.039 0.143 0.130 1.52 -10.95 -10.30 -11.82
23.596 23.885 0.626 0.680 0.78 -17.75 -18.21 -19.11
23.204 23.517 1.185 1.217 1.79 -20.50 -20.14 -20.30
25.161 25.189 0.921 0.947 1.68 -17.87 -16.13 -16.30
22.884 23.227 0.832 0.837 0.20 -19.81 -19.42 -19.64
24.346 24.589 0.793 0.757 1.86 -18.12 -18.11 -18.58
25.453 24.878 0.952 0.964 0.72 -17.77 -17.81 -18.06
25.911 24.994 0.921 0.890 0.96 -17.34 -17.59 -18.11
26.004 24.915 0.986 0.966 0.95 -17.38 -16.98 -17.30
26.803 25.232 1.044 1.400 0.78 -16.67 -18.17 -19.17
25.204 25.314 0.929 0.882 0.64 -18.05 -18.68 -19.63
25.357 24.735 0.901 0.875 1.69 -17.64 -17.48 -17.67
24.117 24.028 0.484 0.511 0.84 -16.64 -16.60 -16.83
26.108 25.342 0.763 1.400 1.07 -16.27 -16.39 -15.54
24.909 25.120 0.711 1.152 0.42 -17.09 -17.21 -17.85
24.474 24.681 1.044 1.096 0.69 -18.95 -18.95 -19.22
23.100 24.234 0.826 1.391 0.53 -19.61 -19.85 -20.28
22.009 22.633 0.340 0.323 2.88 -17.49 -17.64 -18.17
.
.
.

3



The goals of multivariate analysis:

Generalize univariate statistical methods
Multivariate means, variances, and covariances

Multivariate probability distributions

Reduce the number of variables
Structural simplification

Linear functions of variables (principal components)

Investigate the dependence between variables
Canonical correlations

Statistical inference
Confidence regions

Multivariate regression

Hypothesis testing

Classify or cluster “similar” objects
Discriminant analysis

Cluster analysis

Prediction
4



Organizing the data

p: The number of variables

n: The number of objects (cases) (the sample

size)

xij: the ith observation on the jth variable

Data array or data matrix

Variables

Objects

1 2 · · · p
1 x11 x12 · · · x1p
2 x21 x22 · · · x2p
... ... ... ...
n xn1 xn2 · · · xnp
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Data matrix

X =

⎡
⎢⎢⎢⎣
x11 x12 · · · x1p
x21 x22 · · · x2p
... ... ...

xn1 xn2 · · · xnp

⎤
⎥⎥⎥⎦

We write X as n row or as p column vectors

X =

⎡
⎢⎢⎢⎢⎣
xT1
xT2...
xTn

⎤
⎥⎥⎥⎥⎦ = [y1,y2, . . . ,yp]

Matrix methods are essential to multivariate

analysis

We will need only small amounts of matrix

methods, e.g.,

AT : The transpose of A

|A|: The determinant of A

(AB)T = BTAT
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Descriptive Statistics

The sample mean of the jth variable:

x̄j =
1
n

n∑
i=1

xij

The sample mean vector:

x̄ =

⎡
⎢⎢⎢⎣
x̄1
x̄2
...
x̄p

⎤
⎥⎥⎥⎦

The sample variance of the jth variable:

sjj = 1
n−1

n∑
k=1

(xkj − x̄j)
2

The sample covariance of variables i and j:

sij = sji =
1

n−1

n∑
k=1

(xki − x̄i)(xkj − x̄j)

[Question: Why do we divide by (n−1) rather

than n?]
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The sample covariance matrix:

S =

⎡
⎢⎢⎢⎣
s11 s12 · · · s1p
s21 s22 · · · s2p
... ... ...

sp1 sp2 · · · spp

⎤
⎥⎥⎥⎦

The sample correlation coefficient of variables

i and j:

rij =
sij√
siisjj

Note that rii = 1 and rij = rji

The sample correlation matrix:

R =

⎡
⎢⎢⎢⎣

1 r12 · · · r1p
r21 1 · · · r2p
... ... ...

rp1 rp2 · · · 1

⎤
⎥⎥⎥⎦
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S and R are symmetric

S and R are positive semidefinite: vTSv ≥ 0

for any vector v.

Equivalently,

s11 ≥ 0,

∣∣∣∣∣ s11 s12
s21 s22

∣∣∣∣∣ ≥ 0,

∣∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣∣ ≥ 0,

etc.

If S is singular so is R and conversely.

If n ≤ p then S and R will be singular:

|S| = 0 and |R| = 0

Which practical astrophysicist would attempt

a statistical analysis with 65 variables and a

sample size smaller than 65?
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vTSv > 0 is the variance of vTX

If n > p then, generally (but not always), S and

R are strictly positive definite:

Then Var(vTX) = vTSv > 0 for any non-zero

vector v

Equivalently,

s11 > 0,

∣∣∣∣∣ s11 s12
s21 s22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
s11 s12 s13
s21 s22 s23
s31 s32 s33

∣∣∣∣∣∣∣ > 0,

etc.

However, if n > p and |S| = 0 then for some

v Var(vTX)= 0 implying vTX is a constant

and there is a linear relationship between the

components of X

In this case, we can eliminate the dependent

variables: dimension reduction
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The COMBO-17 data

Variables: Rmag, μmax, Mcz, MCzml, chi2red,

UjMAG, BjMAG, VjMAG

p = 8 and n = 3462

The sample mean vector:

Rmag mumax Mcz MCzml chi2red UjMAG BjMAG VjMAG
23.939 24.182 0.729 0.770 1.167 -17.866 -17.749 -18.113

The sample covariance matrix:

Rmag mumax Mcz MCzml chi2red UjMAG BjMAG VjMAG
Rmag 2.062 1.362 0.190 0.234 0.147 0.890 1.015 1.060
mumax 1.362 1.035 0.141 0.172 0.079 0.484 0.578 0.610
Mcz 0.190 0.141 0.102 0.105 -0.004 -0.438 -0.425 -0.428
MCzml 0.234 0.172 0.105 0.141 -0.009 -0.416 -0.414 -0.419
chi2red 0.147 0.079 -0.004 -0.009 0.466 0.201 0.204 0.221
UjMAG 0.890 0.484 -0.438 -0.416 0.201 3.863 3.890 3.946
BjMAG 1.015 0.578 -0.425 -0.414 0.204 3.890 4.500 4.219
VjMAG 1.060 0.610 -0.428 -0.419 0.221 3.946 4.219 4.375
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Advice given by some for Correlation Ma-
trix:

• Use no more than two significant digits.

• Starting with the physically most impor-
tant variable, reorder variables by descend-
ing correlations.

• Suppress diagonal entries to ease visual clut-
ter.

• Suppress zeros before the decimal point.

COMBO-17’s correlation matrix
Rmag mumax Mcz MCzml chi2red UjMAG BjMAG VjMAG

Rmag .9 .4 .4 .2 .3 .3 .3
mumax .9 .4 .5 .1 .2 .3 .3
Mcz .4 .4 .9 -.0 -.7 -.6 -.6
MCzml .4 .5 .9 -.0 -.6 -.5 -.5
chi2red .2 .1 -.0 -.0 .2 .1 .2
UjMAG .3 .2 -.7 -.6 .2 .9 1.0
BjMAG .3 .3 -.6 -.5 .1 .9 1.0
VjMAG .4 .3 -.6 -.5 .2 1.0 1.0
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Reminder: Correlations measure the strengths

of linear relationships between variables if such

relationships are valid

{UjMAG, BjMAG, VjMAG} are highly corre-

lated; perhaps, two of them can be eliminated.

Similar remarks apply to {Rmag, mumax} and

{Mcz, Mczml}.

chi2red has small correlation with {mumax, Mcz,

Mczml}; we would retain chi2red in the subse-

quent analysis
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Multivariate probability distributions

Find the probability that a galaxy chosen at

random from the population of all COMBO-

17 type galaxies satisfies

4 ∗Rmag+ 3 ∗mumax+ |Mcz-MCzml|
−chi2red+(UjMAG+BjMAG)2+VjMAG2 < 70?

X1: Rmag

X2: mumax

· · ·

X7: BjMAG

X8: VjMAG
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We wish to make probability statements about

random vectors

p-dimensional random vector:

X =

⎡
⎢⎣X1

...
Xp

⎤
⎥⎦

where X1, . . . , Xp are random variables

X is a continuous random vector if X1, . . . , Xp

all are continuous random variables

We shall concentrate on continuous random

vectors
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Each nice X has a prob. density function f

Three important properties of the p.d.f.:

1. f(x) ≥ 0 for all x ∈ R
p

2. The total area below the graph of f is 1:∫
Rp

f(x) dx = 1

3. For all t1, . . . , tp,

P(X1 ≤ t1, . . . , Xp ≤ tp) =
∫ t1

−∞
· · ·

∫ tp

−∞
f(x) dx
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Reminder: “Expected value,” an average over

the entire population

The mean vector:

µ =

⎡
⎢⎣μ1...
μp

⎤
⎥⎦

where

μi = E(Xi) =
∫
Rp

xif(x)dx

is the mean of the ith component of X

The covariance between Xi and Xj:

σij = E(Xi − μi)(Xj − μj)

= E(XiXj)− μiμj

The variance of each Xi:

σii = E(Xi − μi)
2 = E(X2

i )− μ2i
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The covariance matrix of X:

Σ =

⎡
⎢⎢⎢⎣
σ11 · · · σ1p
σ21 · · · σ2p
... ...

σp1 · · · σpp

⎤
⎥⎥⎥⎦

An easy result:

Σ = E(X− µ)(X− µ)T

Also,

Σ = E(XXT )− µµT

To avoid pathological cases, we assume that

Σ is nonsingular
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Theory vs. Practice

Population vs. Random Sample

All galaxies of A sample from the

COMBO-17 type COMBO-17 data set

Random vector Random sample

X x1, . . . ,xn

Population Mean Sample mean

µ = E(X) x̄ = 1
n

∑n
k=1 xk

Popn. cov. matrix Sample cov. matrix,

Σ = S = 1
n−1

E(X− µ)(X− µ)T ×∑
(xk − x̄)(xk − x̄)T

Laws of Large Numbers: In a technical sense,

x̄ → µ and S → Σ as n → ∞
19



The Multivariate Normal Distribution

X = [X1, . . . , Xp]T : A random vector whose

possible values range over all of R
p

X has a multivariate normal distribution if it

has a probability density function of the form

f(x) = const.× exp
[
− 1

2(x− µ)TΣ−1(x− µ)
]

where

const. =
1

(2π)p/2 |Σ|1/2

Standard notation: X ∼ Np(µ,Σ)

Special case, p = 1: Let Σ = σ2; then

f(x) =
1

(2πσ2)1/2
exp

[
− 1

2

(
x− μ

σ

)2]
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Special case, Σ diagonal:

Σ =

⎡
⎢⎢⎢⎢⎣
σ21 0 · · · 0
0 σ22 · · · 0
... ... 0
0 0 · · · σ2p

⎤
⎥⎥⎥⎥⎦

|Σ| = σ21σ
2
2 · · ·σ2p

Σ−1 =

⎡
⎢⎢⎢⎢⎣
σ−2
1 0 · · · 0
0 σ−2

2 · · · 0
... ... 0
0 0 · · · σ−2

p

⎤
⎥⎥⎥⎥⎦

f(x) =
p∏

j=1

1

(2πσ2j )
1/2

exp
[
− 1

2

(
xj − μj

σj

)2]

Conclusion: X1, . . . , Xp are mutually indepen-

dent and normally distributed

21



Recall: X ∼ Np(µ,Σ) if its p.d.f. is of the form

f(x) = const.× exp
[
− 1

2(x− µ)′Σ−1(x− µ)
]

where

const. =
1

(2π)p/2 |Σ|1/2

Facts:

µ = E(X),

Σ = Cov(X) ∫
Rp

f(x) dx = 1
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If A is a k × p matrix then

AX+ b ∼ Nk(Aµ+ b, AΣAT)

Proof: Use Fourier transforms

Special cases:

b = 0 and A = vT where v �= 0:

vTX ∼ N(vTµ,vTΣv)

Note: vTΣv > 0 since Σ is positive definite

v = [1,0, . . . ,0]T : X1 ∼ N(μ1, σ11)

Similar argument: Each Xi ∼ N(μi, σii)
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Partition X into two subsets, X =
[
Xu

Xl

]

Similarly, partition

µ =

[
µu
µl

]
and Σ =

[
Σuu Σul
Σlu Σll

]

Then

µu = E(Xu), µl = E(Xl)

Σuu = Cov(Xu), Σll = Cov(Xl)

Σul = Cov(Xu,Xl)

The marginal distribution of Xu:

Xu ∼ Nu(µu,Σuu)

The conditional distribution of Xu|Xl = cl:

Xu|Xl = cl ∼

Nu(µu +ΣulΣ
−1
ll (cl − µl),Σuu −ΣulΣ

−1
ll Σlu)
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If X ∼ Np(µ,Σ) then vTX has a 1-D normal

distribution for every vector v ∈ R
p

Conversely, if vTX has a 1-D normal distribu-

tion for every v then X ∼ Np(µ,Σ)

Proof: Fourier transforms again

(The assumption that an X is normally dis-

tributed is very strong)

Let us use this result to construct an exploratory

test of whether some COMBO-17 variables

have a multivariate normal distribution

Choose several COMBO-17 variables, e.g.,

Rmag, mumax, Mcz, MCzml, chi2red, UjMAG,

BjMAG, VjMAG
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Use R to generate a “random” vector v =

[v1, v2, . . . , v8]
T

For each galaxy, calculate

v1∗Rmag + v2*mumax + · · · + v8*VjMAG

This produces 3,462 such numbers (v-scores)

Construct a Q-Q plot of all these v-scores

against the standard normal distribution

Study the plot to see if normality seems plau-

sible

Repeat the exercise with a new random v

Repeat the exercise 103 times

Note: We need only those vectors for which

v21 + · · ·+ v28 = 1 (why?)

26



Mardia’s test for multivariate normality

If the data contain a substantial number of

outliers then it goes against the hypothesis of

multivariate normality

If one COMBO-17 variable is not normally dis-

tributed then the full set of variables does not

have a multivariate normal distribution

In that case, we can try to transform the orig-

inal variables to produce new variables which

are normally distributed

Example: Box-Cox transformations, log trans-

formations (a special case of Box-Cox)

For data sets arising from a multivariate nor-

mal distribution, we can perform accurate in-

ference for the mean vector and covariance

matrix
27



Variables (random vector): X ∼ Np(µ,Σ)

The parameters µ and Σ are unknown

Data (measurements): x1, . . . ,xn

Problem: Estimate µ and Σ

x̄ is an unbiased and consistent estimator of µ

x̄ is the MLE of µ

The MLE of Σ is n−1
n S; this is not unbiased

The sample covariance matrix, S, is an unbi-

ased estimator of Σ

Since S is close to being the MLE of Σ, we

estimate Σ using S
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A confidence region for µ

Naive method: Using only the data on the
ith variable, construct a confidence interval for
each μi

Use the collection of confidence intervals as a
confidence region for µ

Good news: This can be done using elemen-
tary statistical methods

Bad news: A collection of 95% confidence in-
tervals, one for each μi, does not result in a
95% confidence region for µ

Starting with individual intervals with lower con-
fidence levels, we can achieve an overall 95%
confidence level for the combined region

Bonferroni inequalities: Some difficult math
formulas are needed to accomplish that goal
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Worse news: The resulting confidence region

for µ is a rectangle

This is not consonant with a density function

of the form

f(x) = const.× exp
[
− 1

2(x− µ)TΣ−1(x− µ)
]

The contours of the graph of f(x) are ellip-

soids, so we should derive an ellipsoidal confi-

dence region for µ
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Fact: Every positive definite symmetric matrix

has a unique positive definite symmetric square

root

Σ−1/2: The p.d. square-root of Σ−1

If A is a p × p nonsingular matrix and X ∼
Np(µ,Σ) then

AX+ b ∼ Np(Aµ+ b, AΣAT)

Set A = Σ−1/2, b = −Σ−1/2µ

Then Aµ+b = 0, AΣAT = Σ−1/2ΣΣ−1/2 = Ip

Σ−1/2(X− µ) ∼ Np(0, Ip)

Ip = diag(1,1, . . . ,1), a diagonal matrix

31



Methods of Multivariate Analysis

Reduce the number of variables
Structural simplification

Linear functions of variables (Principal Components)

Investigate the dependence between variables
Canonical correlations

Statistical inference
Estimation

Confidence regions

Hypothesis testing

Classify or cluster “similar” objects
Discriminant analysis

Cluster analysis

Predict
Multiple Regression

Multivariate regression
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Principal Components Analysis (PCA)

COMBO-17: p = 65 (wow!)

Can we reduce the dimension of the problem?

X: A p-dimensional random vector

Covariance matrix: Σ

Solve for λ: |Σ− λI| = 0

Solutions: λ1, . . . , λp, the eigenvalues of Σ

Assume, for simplicity, that λ1 > · · · > λp

Solve for v: Σv = λjv, j = 1, . . . , p

Solution: v1, . . . ,vp, the eigenvectors of Σ

Scale each eigenvector to make its length 1

v1, . . . ,vp are orthogonal
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The first PC: The linear combination vTX such

that

(i) Var(vTX) is maximal, and

(ii) vTv = 1

Maximize Var(vTX) = vTΣv subject to vTv =

1

Lagrange multipliers

Solution: v = v1, the first eigenvector of Σ

vT1X is the first principal component

The second PC: The linear combination vTX

such that

(i) Var(vTX) is maximal,

(ii) vTv = 1, and

(iii) vTX has zero correlation with the first PC
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Maximize Var(vTX) = vTΣv with vTv = 1 and

Cov(vTX,vT1X) ≡ vTΣv1 = 0

Lagrange multipliers

Solution: v = v2, the second eigenvector of Σ

The kth PC: The linear combination vTX such

that

(i) Var(vTX) is maximal,

(ii) vTv = 1, and

(iii) vTX has zero correlation with all prior PCs

Solution: v = vk, the kth eigenvector of Σ

The PCs are random variables

Simple matrix algebra: Var(vTkX) = λk
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p-dimensional data: x1, . . . ,xn

S: the sample covariance matrix

λ̃1 > · · · > λ̃p: The eigenvalues of S

Remarkable result:

λ̃1 + · · ·+ λ̃p = s11 + · · ·+ spp

ṽ1, . . . , ṽp: The corresponding eigenvectors

ṽT1X, . . . , ṽTp X: The sample PCs

λ̃1, . . . , λ̃p: The estimated variances of the PCs

Basic idea: Use the sample PCs instead of X

to analyze the data
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Example: (Johnson and Wichern)

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.31 1.68 1.80 2.16 −.25
1.68 1.77 .59 .18 .17
1.80 .59 .80 1.07 −.16
2.16 .18 1.07 1.97 −.36
−.25 .17 −.16 −.36 .50

⎤
⎥⎥⎥⎥⎥⎥⎦

The sample principal components:

Y1 = .8X1 + .3X2 + .3X3 + .4X4 − .1X5
Y2 = −.1X1 − .8X2 + .1X3 + .6X4 − .3X5
etc.

λ̃1 = 6.9, λ̃2 = 1.8, . . . ; λ̃1 + · · ·+ λ̃5 = 8.4

X1: Rmag
X2: mumax
etc.

The PCs usually have no physical meaning, but
they can provide insight into the data analysis
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λ̃1 + · · ·+ λ̃p: A measure of total variability of

the data

λ̃k

λ̃1 +···+λ̃p
: The proportion of total variability

of the data “explained” by the kth PC

How many PC’s should we calculate?

Stop when

λ̃1 + · · ·+ λ̃k

λ̃1 + · · ·+ λ̃p
≥ 0.9

Scree plot: Plot the points (1, λ̃1), . . . , (p, λ̃p)

and connect them by a straight line. Stop

when the graph has flattened.

Other rule: Kaiser’s rule; rules based on tests

of hypotheses, ...
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Some feel that PC’s should be calculated from

correlation matrices, not covariance matrices

Argument for correlation matrices: If the orig-

inal data are rescaled then the PCs and the λ̃k
all change

Argument against: If some components have

significantly smaller means and variances than

others then correlation-based PCs will give all

components similarly-sized weights
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COMBO-17 data:

Two classes of galaxies, redder and bluer, but
with overlapping distributions

Dataset: galaxy brightnesses in 17 bands—
detailed view of ”red” and ”blue” for each
galaxy

The following figure of MB (BjMag) vs (280-
B) (S280MAG-BjMag) for restricted range 0.7-
0.9 of z (McZ) shows two cluster (”blue” be-
low and ”red” above), similar to the one in the
website (also Wolf et al., 2004)
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An exercise:

We investigate the relationship of these col-

ors to the brightness variables by multivariate

analysis.

From combo17 dataset collected the even-numbered

columns (30, 32, ..., 54).

Normalized each to (say) the value in column

40 (W640FE) for each galaxy. These are called

“colors”.

Removed variable W640FE from the dataset

We added to this dataset Bjmag (MB). Also

kept Mcz.

Modified “W” variables have been renamed

with an “R” in the beginning.
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Table 1 of Wolf et al. (2005, http://arxiv.org/pdf/ast

ph/0506150v2)

mean locations in multidimensional parameter

space for ”dust-free old” (= ”red”) and ”blue

cloud” (= ”blue”) galaxies

red galaxies has a mean value of (U − V ) =

1.372

blue galaxies has a mean (U − V ) = 0.670—

which are widely separated values

redshift z is a scientifically (very!) interesting

variable denoting age of galaxy

We classify as ”red” if (U − V ) > 0.355 and as

”blue” if (U − V ) ≤ 0.355—color variable

This is the dataset. Data for the first few

galaxies with the first few “R” readings:
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RW420FE RW462FE RW485FD RW518FE RW571FS RW604FE BJMAG MCZ U-V COLOR
-0.018 -0.006 0.000 -0.001 -0.004 -0.002 -17.540 0.832 0.090 1
-0.003 0.002 -0.000 -0.002 0.007 0.006 17.860 0.927 -0.080 1
-0.010 -0.003 0.002 -0.007 -0.000 0.000 -19.910 1.202 0.660 2
0.006 0.010 -0.005 -0.004 -0.005 0.003 -17.390 0.912 -0.160 1
0.002 0.005 0.002 0.010 0.004 0.007 -18.400 0.848 1.680 2
0.004 0.004 0.005 0.002 0.005 0.005 -18.110 0.882 -0.520 1

-0.004 -0.009 -0.008 -0.011 -0.008 -0.011 -16.060 0.896 -0.860 1
-0.002 -0.005 -0.006 -0.000 -0.004 0.002 -16.490 0.930 0.140 1
0.018 0.017 0.008 0.020 0.011 0.015 -17.680 0.774 0.200 1
0.006 0.007 0.001 -0.004 -0.004 -0.000 -11.150 0.062 -0.310 1

-0.009 -0.007 -0.010 -0.009 -0.009 -0.008 -16.990 0.874 -0.030 1
-0.032 -0.021 -0.018 -0.024 -0.019 -0.020 -13.990 0.173 0.650 2
-0.015 -0.009 -0.013 -0.006 -0.013 -0.014 -18.490 1.109 0.190 1
0.002 -0.002 0.002 0.002 0.012 0.002 -10.300 0.143 0.870 2

-0.028 -0.023 -0.020 -0.020 -0.025 -0.017 -18.210 0.626 1.360 2
0.011 0.015 -0.002 -0.003 0.002 0.009 -20.140 1.185 -0.200 1
0.010 0.007 0.012 0.010 0.010 0.015 -16.130 0.921 -1.570 1
0.001 0.004 0.004 0.001 0.002 0.003 -19.420 0.832 -0.170 1
0.005 0.013 -0.002 0.008 0.007 0.007 -18.110 0.793 0.460 2

-0.007 -0.002 -0.009 -0.002 0.000 -0.008 -17.810 0.952 0.290 1
-0.004 -0.004 -0.007 -0.009 -0.007 -0.002 -17.590 0.921 0.770 2
-0.007 -0.008 -0.014 -0.004 -0.003 -0.002 -16.980 0.986 -0.080 1
0.008 -0.004 0.003 -0.001 -0.001 0.007 -18.170 1.044 2.500 2

-0.000 0.002 0.004 0.000 0.004 0.001 -18.680 0.929 1.580 2
0.002 0.003 0.008 -0.003 0.001 0.001 -17.480 0.901 0.030 1
0.020 0.013 0.009 0.009 0.018 0.026 -16.600 0.484 0.190 1
0.016 0.008 0.019 0.019 0.014 0.010 -16.390 0.763 -0.730 1
0.001 0.001 0.006 0.004 0.003 0.002 -17.210 0.711 0.760 2
0.003 -0.001 -0.008 0.004 0.002 -0.001 -18.950 1.044 0.270 1
0.007 0.007 0.006 0.008 0.007 0.011 -19.850 0.826 0.670 2

-0.030 -0.013 -0.017 -0.001 0.021 0.025 -17.640 0.340 0.680 2
-0.058 -0.031 -0.037 -0.026 -0.015 -0.012 -17.600 0.365 0.390 2
0.004 0.006 0.008 0.013 0.018 0.021 -20.040 0.898 0.080 1

-0.005 -0.004 -0.006 -0.006 0.001 0.005 -19.540 0.878 0.290 1
-0.009 0.003 -0.009 -0.006 0.001 -0.007 -12.970 0.082 0.510 2
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PCA of Combo17 data:

PCA of the 12 color variables RW420FE RW462FE
.... RW856FD RW914FD
The scree plot suggests that two components
are adequate.

Variable PC1 weight PC2 weight
RW420FE 0.954 0.107
RW462FE 0.957 0.144
RW485FD 0.960 0.149
RW518FE 0.938 0.218
RW571FS 0.810 0.456
RW604FE 0.128 0.902
RW646FD -0.897 0.326
RW696FE -0.914 0.223
RW753FE -0.913 0.252
RW815FS -0.953 0.134
RW856FD -0.970 0.110
RW914FD -0.961 0.117
Variance
explained 9.547 1.386
% Variance
explained 79.555 11.553
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Two components explain most of the variation

(about 91%)

Interpretation:

Principal Component 1:

Weights are nearly the same in magnitude (ex-

cept for RW604FE–insignificant)

RW4... and RW5... vs RW6... RW7.. RW8..

RW9..

Principal Component 2:

RW604E the main component

Rest are nearly equal and small

Two components complement each other

Plot of PC scores of galaxies can be used for

classification

Will see this in the Cluster Analysis chapter
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Classification Methods:

Two distinct types of classification problems—
unsupervised and supervised

Unsupervised classification: Cluster Analysis:
to find groups in the data objects
objects within a group are similar

Example: what kinds of celestial objects are
there— stars, planets, moons, asteroids, galax-
ies, comets, etc.

Multivariate (qualitative and quantitative) data
on objects used

Characterize each type of object by these vari-
ables

Example: C. Wolf, M. E. Gray, and K. Meisenheimer

(2008): Red-sequence galaxies with young stars and

dust: The cluster Abell 901/902 seen with COMBO-

17. Astronomy & Astrophysics classify galaxies into
three classes with properties in the following
table by cluster analysis
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Mean properties of the three galaxy SED class samples.
Property Dust-free old Dusty red-seq Blue cloud
Ngalaxy 294 168 333
Nfieldcontamination 6 7 49
Nspectra 144 69 36
zspec 0.1646 0.1646 0.1658
σcz/(1+ z)/(km/s) 939 1181 926
zspec,N 0.1625 0.1615 N/A
zspec,S 0.1679 0.1686 N/A
σcz,N/(1 + z)/(km/s) 589 597 N/A
σcz,S/(1+ z)/(km/s) 522 546 N/A
log(Σ10(Mpc/h)2) 2.188 1.991 1.999

EWe(OII)/
◦
A N/A 4.2 ± 0.4 17.5 ± 1.5

EWa(Hδ)/
◦
A 2.3 ± 0.5 2.6 ± 0.5 4.5 ± 1.0

age/Gyr 6.2 3.5 1.2
EB−V 0.044 0.212 0.193
(U − V )rest 1.372 1.293 0.670
MV,rest -19.31 -19.18 -18.47
B - R 1.918 1.847 1.303
V - I 1.701 1.780 1.290
R - I 0.870 0.920 0.680
U - 420 0.033 -0.079 -0.377
420 - 464 0.537 0.602 0.560
464 - 518 0.954 0.827 0.490
604 - 646 0.356 0.339 0.238
753 - 815 0.261 0.274 0.224
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Supervised Learning or Discriminant Anal-

ysis

Know that there are these three types of galax-

ies

Have Training Samples where an expert (su-

pervisor) classifies units in the sample

Multivariate observations on the sample units

available

A new object is seen on which multivariate ob-

servations made

Problem: Classify it in one or other of the

groups

In discriminant Analysis we develop a formula

for such classification
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Formula arrived at by performing discriminant

analysis of training data

Some assumptions are often made

Multivariate normality in each group with a

common covariance matrix

Find a classification rule that minimizes mis-

classification

This leads to Linear Discriminant Function,

a linear combination of observed variables
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Discriminant Analysis Example

Use “R” data to develop a formula for classi-

fication into color 1 or 2

The linear discriminant function is

0.345 + RW420FE*14.277-RW462FE*0.844

-RW485FD*36.890 +RW518FE*6.541

+RW571FS*2.249+RW604FE*25.670

+RW646FD*18.331+RW696FE*15.123-RW753FE*29.072

-RW815FS*16.970-RW856FD*16.467+RW914FD*2.024

If this value is > 0 we classify a galaxy as 1

(red); else 2 (blue)

Using the formula on the training sample, we

get an idea of the performance of the classifi-

cation rule as follows:
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Actual|| Classified

Group | Group

| 1 2 %correct

------+-----------------------

1 2,111 45 98

2 1,020 286 22

-------------------------------

Total 3,131 331 69

This is not a very good classification rule—

the chosen variables do not provide adequate

separation between blue and red
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Multiple Regression

If a supervisor had used the value of U − V to classify

the galaxies into red and blue, and if values of U − V

are indeed available, then why not use them rather than

the red-blue classification?

U − V data rather than color data in training
sample

Leads to Multiple Regression Analysis

Develop a formula for prediction of U − V in a
new galaxy from ”R” values.

Results of such a multiple (linear) regression
analysis:

Multiple correlation: a measure of how good
the regression is: 0.344

Not very good—much as in Discriminant Anal-
ysis
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Table below shows which ”R” variables are

useful for prediction of U−V : those with small

p-values.

Regression Coefficients and their significance

Effect Coefficient Standard Error t p-value
---------+----------------------------------------------
CONSTANT 0.175 0.012 15.010 0.000
RW420FE -1.624 0.839 -1.936 0.053
RW462FE 0.895 1.371 0.653 0.514
RW485FD 5.072 1.664 3.049 0.002
RW518FE -1.921 1.199 -1.602 0.109
RW571FS -1.126 1.178 -0.956 0.339
RW604FE -4.636 1.456 -3.184 0.001
RW646FD -2.345 1.340 -1.750 0.080
RW696FE -2.729 0.917 -2.977 0.003
RW753FE 3.943 1.020 3.866 0.000
RW815FS 3.394 0.902 3.761 0.000
RW856FD 3.059 0.961 3.182 0.001
RW914FD 0.036 0.740 0.049 0.961
========================================================
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