Space Telescope Science Institute
statistics mini-course

October 2011

Regression

James L Rosenberger
Statistics Department
Penn State University.

Adapted from notes prepared by RL Karandikar
Mean and variance

Recall we had defined the Expectation or the mean of a random variable X as

$$\mu = E(X) = \begin{cases} \sum_i x_i P(X = x_i) & \text{for discrete } X \\ \int_{-\infty}^{\infty} x f(x) \, dx & \text{for continuous } X \text{ with density } f(x) \end{cases}$$

and the variance of a random variable X as

$$\sigma^2 = \text{Var}(X) = E(X^2) - \mu^2 = \begin{cases} \sum_i x_i^2 P(X = x_i) - \mu^2 \\ \int_{-\infty}^{\infty} x^2 f(x) \, dx - \mu^2 \end{cases}$$
If X and Y are random variables with means μ_X and μ_Y, then the **covariance** of X and Y is defined by

$$\text{Cov} (X, Y) = E (X - \mu_X) (Y - \mu_Y) = E(XY) - \mu_X \mu_Y$$

The **correlation coefficient** $\rho (X, Y)$ of X and Y is defined by

$$\rho(X, Y) = \frac{\text{Cov} (X, Y)}{\sqrt{\text{Var} (X) \text{Var} (Y)}}$$
Properties of mean and variance

\[E(aX + b) = aEX + b, \]
\[\text{Var}(aX + b) = a^2 \text{Var}(X) \]
\[E(aX + bY + c) = aEX + bEY + c \]
\[\text{Var}(aX + bY + c) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) + 2ab \text{Cov}(X, Y) \]
It may be shown that for any $n \times n$ matrix A and $n \times 1$ vector b

$$E\left(AY + b\right) = AEY + b,$$

$$\text{Cov}\left(AY + b\right) = A\text{Cov}(Y)A^T.$$

which is the basic result used in regression.
In 1929 Edwin Hubble investigated the relationship between distance and radial velocity of extra-galactic nebulae (celestial objects). It was hoped that some knowledge of this relationship might give clues as to the way the universe was formed and what may happen later. His findings revolutionized astronomy and are the source of much research today. Given here is the data which Hubble used for 24 nebulae.
\[X = \text{Distance (in Megaparsecs) from earth} \]

\[Y = \text{The recession velocity (in km/sec)} \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>.032</td>
<td>170</td>
<td>.034</td>
<td>290</td>
<td>.214</td>
<td>-130</td>
<td>.263</td>
<td>-70</td>
</tr>
<tr>
<td>.275</td>
<td>-185</td>
<td>.275</td>
<td>-220</td>
<td>.45</td>
<td>200</td>
<td>.5</td>
<td>290</td>
</tr>
<tr>
<td>.5</td>
<td>270</td>
<td>.63</td>
<td>200</td>
<td>.8</td>
<td>300</td>
<td>.9</td>
<td>-30</td>
</tr>
<tr>
<td>.9</td>
<td>650</td>
<td>.9</td>
<td>150</td>
<td>.9</td>
<td>500</td>
<td>1.0</td>
<td>920</td>
</tr>
<tr>
<td>1.1</td>
<td>450</td>
<td>1.1</td>
<td>500</td>
<td>1.4</td>
<td>500</td>
<td>1.7</td>
<td>960</td>
</tr>
<tr>
<td>2.0</td>
<td>500</td>
<td>2.0</td>
<td>850</td>
<td>2.0</td>
<td>800</td>
<td>2.0</td>
<td>1090</td>
</tr>
</tbody>
</table>

[link](lib.stat.cmu.edu/DASL/Datafiles/Hubble.html)
From this data-set Hubble obtained the relation

$$\text{Recession Velocity} = H_0 \times \text{Distance}$$

where H_0 is Hubble’s constant thought to be about 75 km/sec/Mpc.
Back to Hubble’s data
Scatterplot data: \((x_1, y_1), \ldots, (x_n, y_n)\)

Basic assumption: The \(x_i\)’s are non-random measurements; the \(y_i\) are observations on \(Y\), a random variable

Statistical model:

\[Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \ldots, n \]

Errors \(\epsilon_1, \ldots, \epsilon_n\): a random sample from \(N(0, \sigma^2)\)

Parameters: \(\alpha, \beta, \sigma^2\)

\(Y_i \sim N(\alpha + \beta x_i, \sigma^2)\): The \(Y_i\)’s are independent

The \(Y_i\) are not identically distributed, because they have differing means
The likelihood function is the joint density function of the observed data, Y_1, \ldots, Y_n

$$L(\alpha, \beta, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(Y_i - \alpha - \beta x_i)^2}{2\sigma^2} \right]$$

$$= (2\pi\sigma^2)^{-n/2} \exp \left[-\frac{\sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)^2}{2\sigma^2} \right]$$

Use partial derivatives to maximize L over all α, β and $\sigma^2 > 0$ (Wise advice: Maximize $\ln L$)

The ML estimators are:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \quad \hat{\alpha} = \bar{Y} - \hat{\beta} \bar{x}$$

and

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$
Using this on Hubble’s data we get

\[\hat{\beta} = 454.16, \quad \hat{\alpha} = -40.78 \]

where the intercept term is not significant. If we use regression through origin, the result is

\[\hat{\beta} = 423.94 \]

The result from the historical data set obtained by Hubble is very different from the current estimate of the Hubble’s constant due to various issues of measurement errors and censoring, etc. Those issues will be discussed in a subsequent lecture.
How do we obtain the least squares estimates?

Let Y_i be the response for the i^{th} data point and let \mathbf{x}_i be the p-dimensional (row vector) of the predictors for the ith data point, $i = 1, \cdots, n$. There are $p - 1$ predictors. We assume that

$$Y_i = \mathbf{x}_i \beta + e_i,$$

where β, an unknown parameter, is a $p \times 1$ column vector, and

$$e_i \sim N_1 (0, \sigma^2),$$

and the e_i are independent.

Note that σ^2 is another parameter for this model.
We further assume that the predictors are linearly independent. Thus we could have the second predictor be the square of the first predictor, the third one the cube of the first one, etc, so this model includes polynomial regression.
We often write this model in matrices. Let

\[
\begin{align*}
Y &= \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \\
X &= \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \\
e &= \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}
\end{align*}
\]

so that \(Y\) and \(e\) are \(n \times 1\) and \(X\) is \(n \times p\). The assumed linear independence of the predictors implies that the columns of \(X\) are linearly independent and hence \(\text{rank}(X) = p\).

\[
x_i = (1, x_i, 1, \ldots, x_i, p-1).
\]
The normal model can be stated more compactly as

\[Y = X\beta + e, \quad e \sim \mathcal{N}_n (0, \sigma^2 I) \]

Note that:
\[\beta = (\beta_0, \beta_1, \ldots, \beta_{p-1})^T. \]

The input matrix \(X \) is of dimension \(n \times (p) \):

\[
\begin{pmatrix}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1,p-1} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2,p-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n,1} & x_{n,2} & \ldots & x_{n,p-1}
\end{pmatrix}
\]
Therefore, using the formula for the multivariate normal density function, we see that the joint density of \mathbf{Y} is

$$f_{\beta, \sigma^2}(\mathbf{y}) = (2\pi)^{-n/2} |\sigma^2 \mathbf{I}|^{-1/2} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)^T (\sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{X}\beta) \right\}$$

$$= (2\pi)^{-n/2} (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\beta||^2 \right\}$$
Therefore the likelihood for this model is

$$L_Y(\beta, \sigma^2) = (2\pi)^{-n/2} (\sigma^2)^{-n/2} \exp\left\{ -\frac{1}{2\sigma^2} \|Y - X\beta\|^2 \right\}$$
Estimation of β

First, we note that the assumption on the X matrix implies that X^TX is invertible.

The ordinary least square (OLS) estimator of β is found by minimizing

$$q(\beta) = \sum (Y_i - x_i \beta)^2 = \| Y - X\beta \|^2$$

The formula for the OLS estimator of β is

$$\hat{\beta} = (X^TX)^{-1}X^TY$$
Note that

\[
E\hat{\beta} = (X^TX)^{-1} X^T EY = (X^TX)^{-1} X^T X \beta = \beta
\]

\[
\text{Cov} (\hat{\beta}) = (X^TX)^{-1} X^T \sigma^2 IX (X^TX)^{-1} = \sigma^2 (X^TX)^{-1} = \sigma^2 M
\]

Therefore

\[
\hat{\beta} \sim N_p (\beta, \sigma^2 M)
\]
Properties of the OLS estimator

1. (Gauss-Markov) For the non-normal model the OLS estimator is the best linear unbiased estimator (BLUE), i.e., it has smaller variance than any other linear unbiased estimator.

2. For the normal model, the OLS is the best unbiased estimator i.e., has smaller variance than any other unbiased estimator.

3. Typically, the OLS estimator is consistent, i.e. $\hat{\beta} \to \beta$
The unbiased estimator of σ^2

In regression we typically estimate σ^2 by

$$\hat{\sigma}^2 = \left\| Y - X\hat{\beta} \right\|^2 / (n - p)$$

which is called the unbiased estimator of σ^2. We first state the distribution of $\hat{\sigma}^2$. We have

$$\frac{(n - p) \hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p} \text{ independently of } \hat{\beta}$$
Properties of $\widehat{\sigma}^2$

1. For the general model $\widehat{\sigma}^2$ is unbiased.
2. For the normal model $\widehat{\sigma}^2$ is the best unbiased estimator.
3. $\widehat{\sigma}^2$ is consistent.
We first discuss inference about β_i, the ith component of β. Note that $\hat{\beta}_i$, the ith component of the OLS estimator is the estimator of β_i. Further

$$\text{Var} \left(\hat{\beta}_i \right) = \sigma^2 M_{ii}$$

which implies that the standard error of $\hat{\beta}_i$ is

$$\hat{\sigma}_{\beta_i} = \hat{\sigma} \sqrt{M_{ii}}$$

Therefore we see that a $1 - \alpha$ confidence interval for β_i is

$$\beta_i \in (\hat{\beta}_i - t_{n-p}^{\alpha/2} \hat{\sigma}_{\beta_i}, \hat{\beta}_i + t_{n-p}^{\alpha/2} \hat{\sigma}_{\beta_i})$$.
To test the null hypothesis $\beta_i = c$ against one and two-sided alternatives we use the t-statistic

$$t = \frac{\hat{\beta}_i - c}{\hat{\sigma}_{\hat{\beta}_i}} \sim t_{n-p}.$$
Now consider inference for $\delta = a^T \beta$, let

$$\hat{\delta} = a^T \hat{\beta} \sim N_1 (\delta, \sigma^2 a'Ma)$$

therefore we see that $\hat{\delta}$ is the estimator of δ, and

$$\text{Var} \left(\hat{\delta} \right) = \sigma^2 a'Ma$$

so that the standard error of $\hat{\delta}$ is

$$\hat{\sigma}_{\delta} = \hat{\sigma} \sqrt{a'Ma}$$
Therefore the confidence interval for \(\delta \) is

\[
\delta \in \left(\hat{\delta} - t_{n-p}^{\alpha/2} \hat{\sigma}_{\hat{\delta}}, \hat{\delta} + t_{n-p}^{\alpha/2} \hat{\sigma}_{\hat{\delta}} \right)
\]

and the test statistic for testing \(\delta = c \) is given by

\[
\frac{\hat{\delta} - c}{\hat{\sigma}_{\hat{\delta}}} \sim t_{n-p} \quad \text{under the null hypothesis}
\]

There are tests and confidence regions for vector generalizations of these procedures.
Let x_0 be a row vector of predictors for a new response Y_0. Let
\[\mu_0 = x_0 \beta = EY_0. \]
\[\hat{\mu}_0 = x_0 \hat{\beta} \] is the obvious estimator of μ_0 and
\[
\text{Var} (\hat{\mu}_0) = \sigma^2 x_0 M x_0' \Rightarrow \hat{\sigma}_{\hat{\mu}_0} = \hat{\sigma} \sqrt{x_0 M x_0'}
\]
and therefore a confidence interval for μ_0 is
\[
\mu_0 \in (\hat{\mu}_0 - t_{n-p} \hat{\sigma}_{\hat{\mu}_0}, \hat{\mu}_0 + t_{n-p} \hat{\sigma}_{\hat{\mu}_0})
\]
A 1 − α prediction interval for Y_0 is an interval such that

$$P(a(Y) \leq Y_0 \leq b(Y)) = 1 - \alpha$$

A 1 − α prediction interval for Y_0 is

$$Y_0 \in (\hat{\mu}_0 - t_{n-p}^{\alpha/2} \sqrt{\hat{\sigma}^2 + \hat{\sigma}^2_{\hat{\mu}_0}}, \hat{\mu}_0 + t_{n-p}^{\alpha/2} \sqrt{\hat{\sigma}^2 + \hat{\sigma}^2_{\hat{\mu}_0}})$$

The derivation of this interval is based on the fact that

$$\text{Var}(Y_0 - \hat{\mu}_0) = \sigma^2 + \sigma^2_{\hat{\mu}_0}$$
Let

\[S^2 = \left\| \mathbf{Y} - \mathbf{X} \hat{\beta} \right\|^2 \]

and

\[T^2 = \sum (Y_i - \bar{Y})^2, \]

be the numerators of the variance estimators for the regression model and the intercept only model. We think of these as measuring the "variation" under these two models. Then the coefficient of determination \(R^2 \) is defined by

\[R^2 = \frac{T^2 - S^2}{T^2} \]

Note that

\[0 \leq R^2 \leq 1 \]
Note that $T^2 - S^2$ is the amount of variation in the intercept only model which has been explained by including the extra predictors of the regression model and R^2 is the proportion of the variation left in the intercept only model which has been explained by including the additional predictors.