wilcox.test {stats}R Documentation

Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known as ‘Mann-Whitney’ test.

Usage

wilcox.test(x, ...)

## Default S3 method:
wilcox.test(x, y = NULL,
            alternative = c("two.sided", "less", "greater"),
            mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
            conf.int = FALSE, conf.level = 0.95, ...)

## S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values.
y an optional numeric vector of data values.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
mu a number specifying an optional location parameter.
paired a logical indicating whether you want a paired test.
exact a logical indicating whether an exact p-value should be computed.
correct a logical indicating whether to apply continuity correction in the normal approximation for the p-value.
conf.int a logical indicating whether a confidence interval should be computed.
conf.level confidence level of the interval.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data an optional data frame containing the variables in the model formula.
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed rank test of the null that the distribution of x (in the one sample case) or of x-y (in the paired two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test (equivalent to the Mann-Whitney test) is carried out. In this case, the null hypothesis is that the location of the distributions of x and y differ by mu.

By default (if exact is not specified), an exact p-value is computed if the samples contain less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval and an estimator for the pseudomedian (one-sample case) or for the difference of the location parameters x-y is computed. (The pseudomedian of a distribution F is the median of the distribution of (u+v)/2, where u and v are independent, each with distribution F. If F is symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe (1973), page 34.) If exact p-values are available, an exact confidence interval is obtained by the algorithm described in Bauer (1972), and the Hodges-Lehmann estimator is employed. Otherwise, the returned confidence interval and point estimate are based on normal approximations.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.
parameter the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.
null.value the location parameter mu.
alternative a character string describing the alternative hypothesis.
method the type of test applied.
data.name a character string giving the names of the data.
conf.int a confidence interval for the location parameter. (Only present if argument conf.int = TRUE.)
estimate an estimate of the location parameter. (Only present if argument conf.int = TRUE.)

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the American Statistical Association 67, 687–690.

See Also

kruskal.test for testing homogeneity in location parameters in the case of two or more samples; t.test for a parametric alternative under normality assumptions.

Examples

## One-sample test.
## Hollander & Wolfe (1973), 29f.
## Hamilton depression scale factor measurements in 9 patients with
##  mixed anxiety and depression, taken at the first (x) and second
##  (y) visit after initiation of a therapy (administration of a
##  tranquilizer).
x <- c(1.83,  0.50,  1.62,  2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less")    # The same.
wilcox.test(y - x, alternative = "less",
            exact = FALSE, correct = FALSE) # H&W large sample
                                            # approximation

## Two-sample test.
## Hollander & Wolfe (1973), 69f.
## Permeability constants of the human chorioamnion (a placental
##  membrane) at term (x) and between 12 to 26 weeks gestational
##  age (y).  The alternative of interest is greater permeability
##  of the human chorioamnion for the term pregnancy.
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g")        # greater
wilcox.test(x, y, alternative = "greater",
            exact = FALSE, correct = FALSE) # H&W large sample
                                            # approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

## Formula interface.
boxplot(Ozone ~ Month, data = airquality)
wilcox.test(Ozone ~ Month, data = airquality,
            subset = Month %in% c(5, 8))

[Package stats version 2.1.0 Index]