Bayesian Computation—A Survey
(Lecture 6)

Tom Loredo

Dept. of Astronomy, Cornell University



Statistical Integrals

Inference with independent data:

Consider N data, D = {z;}; and model M with m
parameters (m < N).

Suppose L(0) = p(x1]0) p(2]0) - - - p(zn|0).
Frequentist integrals

Find long-run properties of procedures via sample space integrals:

Z(0) = /dxlp(xﬂ@)/da:gp(a:g\ﬁ)--~/d$Np(xN]9)f(D,8)

Rigorous analysis must explore the 6 dependence; rarely done in
practice.

“Plug-in” approach: Report properties of procedure for 6 = 4.
Asymptotically valid (for large N, expect § — 6).

“Plug-in” results are easy via Monte Carlo (due to independence).



Bayesian integrals

/ 478 4(8) p(6|M) L(6)

® ¢(9) =1— p(D|M) (norm. const., model likelihood)
® () ='box’ — credible region

® 4(9) =0 — posterior mean for 6

Such integrals are sometimes easy if analytic (especially in low
dimensions), often easier than frequentist counterparts (e.g., normal
credible regions, Student’s t).

Asymptotic approximations: Require ingredients familiar from
frequentist calculations. Bayesian calculation is not significantly
harder than frequentist calculation in this limit.

“Exact” numerical calculation: For “large” m (> 4 is often enough!)
the integrals are often very challenging because of correlations (lack
of independence) in parameter space.



Outline

® Asymptotic approximations (N > 1)
® Methods for low-d models (m<20)
® Methods for high-d models (m ~ 10 — —10)

N = # of data

m = # of model parameters



Laplace Approximations

Suppose posterior has a single dominant (interior) mode
at 6, with m parameters

. p(BIM)L(6) ~ p(@1M)L () exp [——(9 —Gyi(o— b)

b i O2Infp(0]M)L(0)]
020 j
= Negative Hessian of In[p(6|M)L(6)]
“Observed info matrix” (for flat prior)
~ Inverse of covariance matrix

E.g., for 1-d Gaussian, I = 1/02



Bayes Factors:

/ do p(6]M)L(0) ~ p(6]M)L(9) (2m)™>T| 7"

Marginals:

Profile likelihood L,(0) = mgxﬁ(é, 0y

~pBID M) & L O)L0)

Expectations:

[ @0 s@penco) s F@wEMLE) @

~

where 6 maximizes fpL



Features
Uses same algorithms as common frequentist
calculations (optimization, Hessian)
Uses ratios — approximation is often O(1/N) or better

Includes volume factors that are missing from common
frequentist methods (better inferences!)

Using “unit info prior” in i1.i.d. setting — Schwarz criterion;
Bayesian Information Criterion (BIC)

. ]
InB~1InL(0)—InL(0,¢)+ 5(7712 —my)In N

Bayesian counterpart to adjusting x* for d.o.f., but partly
accounts for parameter space volume (consistent!)



Drawbacks

Posterior must be smooth and unimodal (or
well-separated modes)

Mode must be away from boundaries (can be relaxed)

Result is parameterization-dependent—try to
reparameterize to make things look as Gaussian as
possible (e.g., 8 — log 6 to straighten curved contours)

Asymptotic approximation with no simple diagnostics
Empirically, it often does not work well for mz10



Low-D (m<510): Cubature & Monte Carlo
Quadrature (1-d)/Cubature (2+-d) Rules:

/ de (6 sz n~%) or O(n™%)

Smoothness — fast convergence in 1-D

Curse of dimensionality: Cartesian product rules
converge slowly, O(n=2/™) or O(n=%™) in m-D



Monomial/lattice cubature rules:

Seek rules exact for multinomials (x weight) up to fixed
monomial degree with desired lattice symmetry.

Number of points required grows much more slowly with
m than for Cartesian rules (but still quickly)

A 7th order rule in 2-d
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Adaptive Cubature:

® Subregion adaptive cubature: Use a pair of lattice
rules (for error estim’n); recursively subdivide regions
w/ large error (ADAPT, DCUHRE, BAYESPACK by
Genz et al.). Concentrates points where most of the

probabillity lies.

® Adaptive grid adjustment: Naylor-Smith method
lteratively reparameterize — update abscissas and
weights to make the (unimodal) posterior approach
normality

These provide diagnostics (error estimates or measures
of reparameterization quality).
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Analysis of Galaxy Polarizations
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Monte Carlo Integration:

Choose points randomly rather than deterministically:

/d99 Z g(0;) + O(n~"/?)

~ O(n~1') with
guasi-MC

Ignores smoothness — poor performance in 1-D

Avoids curse: O(n~1/?) regardless of dimension

Practical problem: multiplier (std. dev’n of ¢) Is large and

uncertain — hard if m= 5-10




Importance sampling:

p(0)

/ do g(0)p(0) = / df g(e)mq(ﬁ) ~ > 9(6:)"

MacKay 2003

Adaptive Monte Carlo: Build the importance sampler
on-the-fly (e.g., VEGAS, m ser in Numerical Recipes)



High-D Models: Posterior Sampling

General Approach:

Draw samples of 8, ¢ from p(6, ¢| D, M); then:

® Integrals, moments easily found via > . f(0;, ¢;)
® {§,} are samples from p(6|D, M)

But how can we obtain {6;, ¢;}?



A Complicated Marginal Distribution

Nascent neutron star properties inferred from neutrino
data from SN 1987A.

Signal model has 9 parameters; multi-modal.

Two Interesting parameters are the NS radius and its
binding energy—a functional of the signal model.
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Rejection Method.:

Instead of sampling 6 directly, sample the area under the
p(0) curve.

P@®)

X X

Adds an auxiliary variable, y = p(8), samples unformly
over {(f,y) : 0 <y < p(A)}, and keeps 6

Hard to find efficient comparison function if m<5-10.



Markov Chain Monte Carlo (MCMC)

Let — A(#) =In[p(0|M)p(D|0, M)]

e_A(Q)
Then p(0|D, M) = — 7 = /d@ e O)

Bayesian integration looks like problems addressed in
computational statmech and Euclidean QFT.

Methods share a common element. make a proposal that
depends on the current state — Markov chains

Goal: An iterative algorithm that wanders around the
posterior with time oc probability.
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The Metropolis-Hastings MCMC Recipe:

Create a “time series” of samples 6; from p(6):

® Draw a candidate 6, from a proposal Q(6;,1;6;)
® Calculate

Q055 0541)p(0i41)
Q(975+1; Qz')p(@z')

® If o > 1, accept the proposal

® Otherwise, accept it with probabillity «; otherwise
repeat the previous sample

o =



What this gets you:

Let T'(0;,1; 6;) be the transition probability.
For a wide variety of choices of (), one can show:
p(0) is the stationary dist’'n,

[ dor @ 000) = (o)
p(0) is a limiting dist'n: even if p, # p,

pi(0) — p(0)

The chain is ergodic,

K 2100 = [ 0 700)

Only ratios of p’'s and ()’s need be known.



What Proposal Distribution?

Almost anything will work—if you wait long enough! But most simple
choices will take very, very long.

Development of new methods is one of the hottest research areas; very
many to choose from.

Good choices tend to be problem-specific.

Some themes:
® Reparameterize wisely

® Adaptively tune the proposal

® Add extra variables (e.g., hybrid Monte Carlo)
® Run parallel chains, possibly interacting

® Temper/anneal if there is multimodality

Transdimensional MCMCM: Methods that can jump between models of
different dimensionality (“reversible jump”)



MCMC Output Diagnostics

How many iterations until the sample distribution is “close” to
p(0)? (“burn-in”)

How many timesteps to use to guarantee mixing/ergodicity?
How correlated are the output samples?

Seek diagnostics both for guiding algorithm tuning, and for
alerting failure.

Several approaches:

® Monitor trends in simulation output

® Compare within- and between-chain variation for several chains

® Monitor algorithm characteristics (acceptance rate, transition or

posterior probabilities)



Summary of Tools

® Asymptotic (large N) approximations: Laplace
approximations

® | ow-d models (m<20):
» Quadrature/Cubature (esp. adaptive methods)
» Monte Carlo integration (imp. sampling, adaptive)

e High-d Models (m ~ 10 to 10°):
» Posterior Sampling (MCMC)



Outlook

There are many useful methods, but there is no panacea

Method choice depends not just on model dimension but
on model/posterior structure

All methods can fail without obvious notice—compare!

Plenty of room for future developments!

Several software packages exist/in development
Implementing multiple methods
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