glmmPQL {MASS}R Documentation

Fit Generalized Linear Mixed Models via PQL


Fit a GLMM model with multivariate normal random effects, using Penalized Quasi-Likelihood.


glmmPQL(fixed, random, family, data, correlation, weights,
        control, niter = 10, verbose = TRUE, ...)


fixed a two-sided linear formula giving fixed-effects part of the model.
random A formula or list of formulae describing the random effects.
family a GLM family.
data an optional data frame used as the first place to find variables in the formulae.
correlation an optional correlation structure.
weights optional case weights as in glm.
control an optional argument to be passed to lme.
niter maximum number of iterations.
verbose logical: print out record of iterations?
... Further arguments for lme.


glmmPQL works by repeated calls to lme, so package nlme will be loaded at first use if necessary.


A object of class "lme": see lmeObject.


Schall, R. (1991) Estimation in generalized linear models with random effects. Biometrika 78, 719–727.

Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88, 9–25.

Wolfinger, R. and O'Connell, M. (1993) Generalized linear mixed models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 48, 233–243.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also



library(nlme) # will be loaded automatically if omitted
summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
                family = binomial, data = bacteria))

[Package MASS version 7.2-33 Index]