multiedit {class}R Documentation

Multiedit for k-NN Classifier

Description

Multiedit for k-NN classifier

Usage

multiedit(x, class, k = 1, V = 3, I = 5, trace = TRUE)

Arguments

x matrix of training set.
class vector of classification of training set.
k number of neighbours used in k-NN.
V divide training set into V parts.
I number of null passes before quitting.
trace logical for statistics at each pass.

Value

index vector of cases to be retained.

References

P. A. Devijver and J. Kittler (1982) Pattern Recognition. A Statistical Approach. Prentice-Hall, p. 115.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

condense, reduce.nn

Examples

data(iris3)
tr <- sample(1:50, 25)
train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
cl <- factor(c(rep(1,25),rep(2,25), rep(3,25)), labels=c("s", "c", "v"))
table(cl, knn(train, test, cl, 3))
ind1 <- multiedit(train, cl, 3)
length(ind1)
table(cl, knn(train[ind1, , drop=FALSE], test, cl[ind1], 1))
ntrain <- train[ind1,]; ncl <- cl[ind1]
ind2 <- condense(ntrain, ncl)
length(ind2)
table(cl, knn(ntrain[ind2, , drop=FALSE], test, ncl[ind2], 1))

[Package class version 7.2-33 Index]