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Introduction

Introduction

» Time series is the study of data consisting of a sequence of
DEPENDENT random variables (or vectors).

» This contrasts a sequence of independent observations and
regression which studies the dependence of one variable on
another.

» In this tutorial, we will discuss models which give rules to
generate future observations based on current observations.

John Fricks Time Series | — Time Domain Methods



Overview

Linear State Space Models

Regression Model

A basic regression model is typically written as follows:

ye = Bo + Bixe + €

for t =1, ..., n where By and 31 are fixed coefficients and x; is a
covariate. The sequence ¢; are independent and identically

distributed normal random variables with variance o2.
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Overview

Linear State Space Models

Autoregressive (AR) Model

A basic time series model related to regression is the
Autoregressive Model (AR)

Xt = GXp—1 + Wy

for t =1,..., n where ¢ is a constant and w; is a sequence of
independent and identically distributed normal random variables
(often called a white noise sequence in this context).

Note that the result of this model will be a single dependent
series—a time series, xi, ..., X¢. |his contrasts the regression model
which relates two variables.
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Overview

Linear State Space Models

Vector Autoregressive Model

An obvious generalization of this model is a vector version
Xt = ®x¢1 + wy

for t =1,..,n where x; = (X¢1, ..., Xep)’ and w; is a sequence of
independent p x 1 normal random vectors with covariance matrix
Q. The matrix ® is a p X p matrix.
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Overview

Linear State Space Models

The Linear State Space Model

Now, imagine that we cannot actually observe our system of
interest x¢ which is a Vector Autoregressive Model. Instead we may
observe a linear transformation of x; with additional observational
error. In other words, the complete model is as follows:

Yy = Axe + Ve, Xe = Oxe1 +wy

where y; is a ¢ X 1 vector, Ais a ¢ X p matrix, and v; is a
sequence of independent normal random variables with mean zero
and covariance matrix R. Also, the sequence v; is independent of
the sequence w;. The equation on the left is generally called the
observation equation, and the equation on the right is called the
system equaion.
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Overview

Linear State Space Models

What can we do with the state space model?

» Maximum Likelihood estimation of the parameters (including
standard errors of our estimates).

» Bayesian estimation of parameters.

» Filtering—conditional distribution of the systems given our
observations. We will, therefore, have a “guess” of our unseen
system, x; given our observations y;.

» Prediction—predict the next observation given the observations
up to the current time.
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Linear State Space Models

Filtering and the Likelihood Function

Filering

Suppose you may observe y1, ..., yn, but you are really interested in
X1, .., Xp and estimating parameters such as ¢. While you cannot
“know” x:, you can have an optimal estimate of x;. The goal will
be to calculate

p(Xt|yt> --->}/1)

For a Gaussian model this means that you'll know E(x¢|yt, ..., y1)
(your guess) and also the conditional variance of x;.
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Linear State Space Models

Filtering and the Likelihood Function

Steps for Filtering

Here's an outline of how that works—assume that you know all the
parameters. Assume that you have the guess at the last time step,

i.e. p(Xe—1]Yt—1, .5 y1).
1. Predict the next system observation based on what you have.

p(Xely1s s Yeo1 = /p(XrIqu)p(XHIytq,-.-,yl)dXH

2. Calculate the guess for the observation, y;, based on this prediction.

P(}/t|}/t—17~-~7}’1) :/P(Yt|Xta}’t—1;--~7}’1)P(Xt|}’t—17~--7Y1)dXt

3. Use Bayes rule to update the prediction for x; with the current
observation y;

P(Xt|}’t—17 “eey YI)P(Yt|Xt7 Yt—1--1y }’1)
p(yelye—1,--y1)
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Linear State Space Models

Filtering and the Likelihood Function

The Likelihood Function

» Remember that the likelihood function is simply the density of
the data evaluated at the observations.

P(yTs - y1) = N1 p(yelye—1, s 1)

Now, we have a likelihood to maximize to obtain parameters
such as ¢.

» When the errors are Gaussian, finding p(x|yt, ..., y1) for each
t is known as calculating the Kalman filter. In general, this
density is called the filter density. These calculations are
reduced to matrix operations in the linear Gaussian case.
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The ARMA Model

The ARMA Model

The ARMA Model

» The ARMA model is the most basic time series model. It can
be fit with every major statistical package.

» The advantage of the ARMA model is that it can be used to
efficiently fit many, if not most, stationary time series.

» The disadvantage is that it is often not very descriptive of the
underlying processes; the parameters are difficult to interpret.
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The ARMA Model

The ARMA Model

Autoregressive (AR) Model of order p

We have already seen a basic AR(1) model. We can extend the AR
model to include more previous observations. The AR(p) model is
as follows:

Xt = Q1Xt—1 + P2Xe—2 + . + PpXe—p + Wt
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The ARMA Model

The ARMA Model

Autoregressive (AR) Model of order p

Note that the AR(p) model can be expressed as a single dimension
of a multivariate AR(1) process.

Xt = Q1Xt—1 + P2Xe—2 + oo + PpXe—p + Wt

Xt o1 P2 93 .. ¢p Xt—1

Xp_1 1 0 0 .. 0 Xe_2
Xt—2 = 0 1 0 ces 0 Xt—3 + Wt

Xt—p+1 0 1 cee 1 0 Xt—p

where w; has covariance p x p matrix with o2 as the first entry
and zeros otherwise.
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The ARMA Model

The ARMA Model

Moving Average Model

Another basic time series model is the Moving Average Model.
The MA(q) model is as follows:

Xt = Wt + 01Wt71 + ...+ qutfq

This model is the moving average across a window of size g + 1.
Note that this is quite different than the Autoregressive model
expand on this. The autoregressive model is recursive which leads
to “memory” that falls off over lags longer than the order of the
model. The moving average model has no dependency for
observations that do not have overlapping windows.
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The ARMA Model
The ARMA Model

ARMA model

These two models, Autoregressive (AR) and Moving Average (MA)
can be combined into an ARMA(p,q)model:

Xt = Q1X¢e—1 + P2X¢—2 + oo + PpXe—p + We + O1wr 1 + ... + Ogwi_g

How can we fit such a model? How do we select a good model?
What are the steps if we are handed data that follows such a
model?
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The ARMA Model
The ARMA Model

ARMA model using the Backshift Operator

There is an alternative way to write an ARMA model. This is done
with the backshift operator. We use the symbol B to denote
moving back one time step.

Bxt = xt—1

This allows us to write the ARMA model as

where

$(B)=1—¢1B — ¢poB> — ... — B
and

0(B) =1+ 601B + 62B% + ... + 0,B7

This is going to help us write the ARMA model in other forms, and
to write extensions the model such as SARIMA.
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The ARMA Model

The ARMA Model

ARMA as a special case of the linear state space model.

We have already seen that an AR(p) can be written as the system
equation of a linear state space model. How can we incorporate
the MA(q) part of the model. This can be seen using the backshift
operator formulation. Let

yt = 0(B)xt.
Since x; is AR(p), it can be represented as

d(B)xt = wy.
Putting these together, we obtain

P(B)yr = 0(B)w.
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The ARMA Model

The ARMA Model

ARMA as a special case of the linear state space model.
Putting these things together we obtain

Yt = (]. 91 Hr)xt

and
Xt ¢1 P2 P3 ... O Xt—1
Xe_1 1 0 0 .. 0 Xe_o
Xt—2 = 0 1 0 ces 0 Xt—3 + wg
Xt—r+1 0 1 cee 1 0 Xt—p

where r is the maximum of p and g and any undefined parameters
are set to zero.
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The ARMA Model

The ARMA Model

ARMA as a special case of the linear state space model.

» The important thing to note is that the ARMA model is
simply a special case of the linear state space model and,
therefore, requires no additional computational methods.

» One implication of this is that assuming that we observe an
ARMA process with additional observational error can be
easily incorporated.

» Missing data can be easily incorporated into this framework.
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Example—Building a Model

The ARMA Model

Wolfer sunspots 1770-1869

sun

0 20 40 60 80 100

Time
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Example—Building a Model

The ARMA Model

ACF of Sunspot Data

Series sun
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ACF
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Example—Building a Model
The ARMA Model

What is the ACF?

The ACF is a plot of the sample autocorrelation function, 5(h),
which is defined as

where .
n— - -
. —1 (Xewh — X)(xe — X)
J(h) = =* :
n
which is the sample autocovariance function. This is an estimator
for the correlation between x; and x;_p. For an MA(q) process,

this ACF should cut off after q lags.
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Example—Building a Model

The ARMA Model

PACF of Sunspot Data

Series sun
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Example—Building a Model

The ARMA Model

What is the PACF?

» The PACF is a plot of the sample partial autocorrelation
function.

» This plot estimates the correlation between the x; and the
X¢—p with the linear effect of the intermediate observations,
Xt—1y ooy Xt—h41, Femoved.

» The algorithm to do this (Durbin-Levinson) is a little
complicated, but can be done quickly.

» For an AR(p) model, the PACF should cut off after the pth
lag.
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Example—Building a Model

The ARMA Model

Fit 1

arima(x = sun, order = c(1, 0, 0))
arl intercept
0.8199 50.4814
s.e. 0.0568 11.4640
sigma”2 estimated as 459.9: 1log likelihood = -449, aic = 904

Standardized Residuals

Time

ACF of Residuals
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Example—Building a Model

The ARMA Model

Fit 2

arima(x = sun, order = c(2, 0, 0))

arl ar2 intercept
1.4067 -0.7117 48.3502
s.e. 0.0705 0.0701 4.9705

sigma”2 estimated as 228.7: log likelihood = -414.79, aic = 837.58

Standardized Residuals

Time

ACF of Residuals

Time Domain Methods
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Example—Building a Model

The ARMA Model

Fit 3

arima(x = sun, order = c(1, 0, 1))

arl mal intercept
0.7239 0.7523 50.2528
s.e. 0.0726 0.0681 9.9355

sigma”2 estimated as 257.8: log likelihood = -420.73, aic = 849.46

Standardized Residuals

Time

ACF of Residuals

Time Domain Methods
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Example—Building a Model

The ARMA Model

Fit 4

Call:
arima(x = sun, order = c(2, 0, 1))
aril ar2 mal intercept
1.2241 -0.5591 0.3844 48.6226
s.e. 0.1125 0.1078 0.1321 6.0308

sigma”2 estimated as 214.5: log likelihood = -411.67, aic = 833.35

Standardized Residuals

2
02 04

puaue.
00 04 08
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Example—Building a Model

The ARMA Model

Fit 5

Call:
arima(x = sun, order = c(3, 0, 0))
aril ar2 ar3 intercept
1.5528 -1.0018 0.2073 48.6030
s.e. 0.0981 0.1543 0.0989 6.0927

sigma”2 estimated as 218.9: log likelihood = -412.65, aic = 835.29

Standardized Residuals

2
02 04

puaue.
00 04 08
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The ARMA Model Extensions to the ARMA model

The ARIMA Model

» The first important extension of the model is the ARIMA
model (I is for integrated.). The assumption here is that the
data will follow an ARMA model after differencing.

» There is a tacit assumption that an ARMA model is
stationary, i.e. that the dependency between x; and x;_
depends only on lag, h. (Restrictions must be put on the
parameters of ARMA models to guarantee stationarity.)

» Differencing also eliminates unwanted trends.
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The ARMA Model Extensions to the ARMA model

An ARIMA(p,d.q)

d(B)VIx: = 6(B)ws
where
¢(B)=1—¢1B — ¢2B*> — ... — $,B",
0(B) =1+ 601B + 60,8+ ... +0,B9,

and
V=1-B
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The ARMA Model Extensions to the ARMA model

The SARIMA model

» The SARIMA model is the seasonal ARIMA model.

» The SARIMA model allows us to model dependency between
nearby observations and also across “seasons”. For example,
the temperature in January could depend as much on last
January’'s temperature as it does on December’s temperature.

» Note that these models are useful when a KNOWN and
FIXED season is to be modeled.
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The ARMA Model Extensions to the ARMA model

An ARIMA(p, d. q) x (P, D, Q)s Model

®(B%)¢(B)VsVxe = O(B)(B)w:

where

H(B)=1—¢1B—...— ¢,BP , 6(B) =1+ 61B + ... + 6,89
and
®(B)=1-®B—..—dpBF , ©(B)=1+0,B+ ...+ ©,B9.
Also,

Vi=1-B°,V=1-8.
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Other Models and References

Other Models

» Extended Kalman Filter. What if our model is not linear?
Using Taylor expansions, we can approximate the non-linear
model with a linear model.

» Particle Filters—~We can use increased computational
capabilities to use simulation to compute filters and likelihood
functions via simulation. This is especially useful for Bayesian
analysis but can be used for likelihood.

» There are a number of other time series that are more
tractable such as ARCH which allows for heteroskedastic error
terms.
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Other Models and References

Research

» Robert Shumway and David Stoffer. Time Series Analysis and
Its Applications. Springer NY, 2006.

» Peter Brockwell and Richard Davis. Time Series: Theory and
Methods, Second Ed. Springer NY, 1991.

» G.E.P. Box and G.M. Jenkins. Time Series Analysis,
Forecasting, and Control. Oakland, CA: Holden Day, 1970.
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