Statistical Cross-Identification: Commentary

Tom Loredo
Dept. of Astronomy, Cornell University
http://www.astro.cornell.edu/staff/loredo/bayes/
Work with Kunlaya Soiaporn, David Ruppert,
David Chernoff, Ira Wasserman

SCMA V — 14 June 2011
Just a Coincidence?

Do gamma-ray burst sources repeat?

250 GRB directions

Subset with neighbor within 3° (39)

Later catalogs:

- 485 out of 1000 are close
- 2280 out of 2702 are close

BATSE GRB directions have 5–25$^\circ$ uncertainties
Error circles for 4 (3?) GRBs from 4B catalog

Seen in a 1.8 d period

Graziani & Lamb 1998

Are these particular bursts from the same source?
Bayesian coincidence assessment, ca. 1995

Not associated

\[\pi(n) \]

\[n_1 \rightarrow D_1 \]

\[n_2 \rightarrow D_2 \]

Associated

\[\pi(n) \]

\[n \rightarrow D_1, D_2 \]

\[\ell_1(n_1) \]

\[\ell_2(n_2) \]

\[\ell_1(n) \ell_2(n) \]
Nearest neighbor test: $p(< 26^\circ) = 0.05$; $p(< 0^\circ) = 0$

Bayes factor will never be compelling if $\sigma = 25^\circ$
Hypothesis testing with p-values

Model comparison with Bayes factors
Challenge: Large hypothesis spaces

For $N = 2$ events, there was a single coincidence hypothesis, M_1 above.

For $N = 3$ events:

- Three doublets: $1 + 2$, $1 + 3$, or $2 + 3$
- One triplet

The number of alternatives (partitions, ω) grows combinatorially; we must assign sensible priors to them, and sum over them (or at least all important ones).
Astrophysical model parameters: hosts, luminosity, B field...

Site distribution, partition

$\pi(n_\alpha, \omega)$

$n_1 \rightarrow D_3 \rightarrow \ldots \rightarrow D_9$

$n_2 \rightarrow D_2 \rightarrow \ldots \rightarrow D_1$

$n_M \rightarrow \ldots \rightarrow D_4$

Cornell group: Patch-based approximate counting; directional and spatio-temporal coincidences

Chicago group: Exhaustive enumeration; apply to small datasets
Why it’s worth it

- No ambiguity in choice of proximity statistic
- Uncertain parameters (source extent, multiplicity, durations) handled by marginalization rather than optimization + adjustment for test multiplicity
- Bayes factors enable building multilevel models relating coincidences to astrophysically interesting quantities (e.g., source event rates; multiplicities)
- Bayes factors usefully quantify strength of an experiment
Bayesian Coincidence Assessment References

- Cornell group (1996) — GRB repetition; directional & time
 http://adsabs.harvard.edu/abs/1996AIPC..384..477L

- Graziani & Lamb (1996) — GRB repetition; SN assoc’n
 http://adsabs.harvard.edu/abs/1996AIPC..366..196G
 http://adsabs.harvard.edu/abs/1998AIPC..428..161G
 http://adsabs.harvard.edu/abs/1999astro.ph..9025G
 http://adsabs.harvard.edu/abs/1999A%26AS..138..469G

- Band (1998) — GRB no-host problem

- Budavári’s team (2008) — General-purpose matching; VO
 astro-ph/1006.2096

- Cornell group (2011) — UHE cosmic ray source ID
 Kunlaya Soiaporn’s poster
Why the gap?

NVO 2005 proposal review:

“Arguments over the superiority of Baysean [sic] statistical techniques are nothing new: the committee doubted any real, practical advantages to the statistical approaches described. It seems like such a capability would not be much more than a ‘few-liner’ addition to XMatch...”
Pierre Auger Observatory UHE Cosmic Rays

69 UHE CRs from PAO
17 AGN from a volume-complete survey to 15 Mpc

Arcs connect each CR to its nearest AGN
Associating UHE CRs and AGN

Model Levels & Random Variables

- **Parameters** — Latent variables — Observables

Source and background luminosity functions → Marked Poisson point process for initial CR directions, energies → Magnetic deflection → Detection and measurement

- Background flux
- Total AGN flux
- Individual AGN fluxes
- CR host labels
- CR energies
- CR guide directions
- Deflection concentration
- CR arrival directions
- CR data
- Exposure factors

Many important uncertainties accounted for via marginalization

Unavoidable subjectivity: Choice of candidate source population
Kunlaya’s algorithm:
Gibbs sampling + Chibb’s marginal likelihood estimator

\[BF_{10} \]

\[M_1: \text{background+17 AGNs vs. } M_0: \text{background only} \]