Bayesian Inference for the White Dwarf Initial-Final Mass Relation

Nathan Stein,1 Ted von Hippel,2 David van Dyk,3 Steven DeGennaro,4 Elizabeth Jeffery,5 Bill Jefferys6,6
1Department of Statistics, Harvard University 2Department of Physics and Astronomy, Siena College 3Department of Astronomy, University of Texas, Austin 4Department of Statistics, Columbia University, Irvine 5Department of Mathematics and Statistics, University of Vermont

Summary

• Stars lose mass as they age, and understanding mass loss is important for understanding stellar evolution.
• The initial-final mass relation (IFMR) is the relationship between a white dwarf’s initial mass on the main sequence and its final mass.
• We have developed a new method for fitting the IFMR based on a Bayesian analysis of photometric observations, combining deterministic models of stellar evolution in an internally coherent way. No mass data are used.
• Our method yields precise inferences with uncertainties for a parameterized linear IFMR. Our method can also return posterior distributions of white dwarf initial and final masses.

Background: Color-Magnitude Diagrams

• Observe stars’ luminosities through different filters
• For the star clusters we study, several parameters are common to all stars:
 - Chemical composition (metallicity)
 - Age
 - Distance
 - Absorption
• Initial masses vary star to star
• Color-magnitude diagrams show the temperature (horizontal axis) and brightness (vertical axis) of stars in different evolutionary states
• For single-age clusters, these different evolutionary states are determined by stars’ initial masses

Fitting the IFMR

Cluster Star Likelihood

• Gaussian errors:
 \[Y_i \sim N(\mu_i, \Sigma) \]
• \[Y_i \] = vector of observations of magnitudes through different filters
• \[\mu_i = (M_1, M_2) \] = the primary and secondary mass of star \(i \)
• \(\mu_i \) = vector of cluster parameters, including age, metallicity, distance, and absorption
• Observational uncertainties \(\Sigma \) are assumed known
• \(M_1 \) and \(M_2 \) are functions of unknown parameters and depend on deterministic stellar evolution models \(G_{\alpha} \) and \(\alpha \)

Mixture Model for Field Stars

• Field stars appear in observational field of view, but are not part of the cluster.
• For simplicity, field stars are assumed uniformly distributed in magnitude space.
• Mixture model:
 \[Z_i \sim \text{Bernoulli}(\pi_i) \]
• Field model:
 \[Y_i \mid M_1, M_2, Z_i \sim p(Y_i \mid M_1, M_2, \theta, \alpha) \]

Prior Distributions

• Primary mass:
 \[\log_{10}(M_1) \sim N(-1.02, 0.677^2) \]
 0.1 M_1 < M_1 < 8.0 M_\odot

Model Fitting

• Unknown parameters: \(M_1, R, \theta, \alpha \)
• MCMC (Metropolis algorithm) on lower-dimensional marginal distribution \(p(\theta, \alpha \mid Y) \)
• Numerical integration to marginalize over \((M_1, R) \)
• Because of conditional independence, 2N-dimensional integral factors into N 2-dimensional integrals that can be evaluated in parallel within each MCMC iteration

Results: Hyades

• Analyzed Hyades data after adjusting for different distances to individual cluster members.
• Inferences agree with IFMRs from the literature, without using white dwarf mass data.
• Bimodality due to two possible age solutions, at approximately 525 Myr and 665 Myr.

References