




Computation for model comparison

1 Marginal likelihood computation
Cubature
Posterior density estimation
Posterior expectations
Randomized cubature
Importance sampling

2 Bayes factors via trans-dimensional MCMC
Reversible-jump MCMC
Birth-death MCMC

3 Guidance
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Trans-dimensional MCMC

Trans-dimensional MCMC performs posterior sampling on the
dimensionally inhomogeneous space of model index and
parameters, (Mi , θi)

The posterior probability for model i is just the frequency of
sampling that model

Several approaches: Reversible-jump MCMC, product-space
MCMC, birth-death processes

Particularly suited to large model spaces where most probability
will be in a few models; trans-d MCMC can often find them

Not well-suited to settings where you need to know the value of a
large or small Bayes factor, e.g., for just a few competing models
(frequencies may be small or zero)
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Reversible-jump MCMC

Supplement the usual MH algorithm with a set of moves from one
model to another, and a varying number of auxiliary parameters so
that the total number of parameters is constant.

Create a consistent set of mappings that use the auxiliary
parameters to determine parameters for a proposed model from the
parameters of the current model. This must be a bijection.

Add factors to the Metropolis-Hastings acceptance ratio
accounting for the model moves and the mappings.

Now just follow the MH recipe!
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Reversible jump example

Two models, M1 : θ M2 : θ1, θ2

Two between-model moves (besides within-model moves):

• Go from 2 to 1 with probability r1, setting

θ =
1

2
(θ1 + θ2)

• Go from 1 to 2 with probability r2, picking a random u and
setting

θ1 = θ + u; θ2 = θ − u

Adjust the usual MH α by factors accounting for the move
probabilities, the dist’n for u, and the Jacobian

|∂(θ, u)/∂(θ1, θ2)|

41 / 47

!"#$%&'&
(
)*+,-./)0)123%4'$5)67%)89:;)<"67=$3%#)>%?7$2425@)<"?A"5%

Also:

• Umstaetter & Tinto (2008) — Detection of gravitational waves
from coalescing binaries (chirps)

• Stroeer & Veitch (2009) — Extracting WD binary signals from
LISA’s colored noise
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Birth-death MCMC
Setting

Competing models with different numbers of components of
the same form but with different parameter values:

• Finite mixture model for density estimation
• Superposition of pulses
• Superposition of (non)linear regression components

Approach

Represent the competing models as realizations of a marked
point process
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Explore via birth–death–split–merge moves; no auxiliary
parameters needed
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Bayesian droplet decomposition of BATSE GRB trigger #540

Broadbent+ (in prep.)
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Rough guidance
From 2003 and 2006 SAMSI programs

• Calculate marginal likelihoods directly when comparing a small set
of models; use trans-dimensional MCMC when exploring a large
model space (with a small but unknown subset likely to be favored)

• “It is important to try to implement more than one method and test
code on examples with known marginals, if nothing else because it
is very easy to make mistakes in coding!”

• Methods using posterior samples will likely require much longer runs
than are needed for parameter estimation; too-short runs can
produce severe errors

• Chib’s method often performs well when it can be easily
implemented; complex Gibbs sampling, and the M-H variant, appear
less stable

• Low-D (<∼15): Mixture-based importance sampling guided by
MCMC output is often easiest to implement with good accuracy
[also try cubature]

• Explore robustness to priors!

SAMSI ’03 tech report, “Marginal Likelihood Computation: A Comparative Study” (Rui Paulo 2003)

SCMA ’06 review paper, “Current Challenges in Bayesian Model Choice” (Clyde+ 2007) 47 / 47
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