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Trans-dimensional MCMC

Trans-dimensional MCMC performs posterior sampling on the
dimensionally inhomogeneous space of model index and
parameters, (M;, 0;)

The posterior probability for model i is just the frequency of
sampling that model

Several approaches: Reversible-jump MCMC, product-space
MCMC, birth-death processes

Particularly suited to large model spaces where most probability
will be in a few models; trans-d MCMC can often find them

Not well-suited to settings where you need to know the value of a
large or small Bayes factor, e.g., for just a few competing models
(frequencies may be small or zero)

Reversible-jump MCMC

Supplement the usual MH algorithm with a set of moves from one
model to another, and a varying number of auxiliary parameters so
that the total number of parameters is constant.

Create a consistent set of mappings that use the auxiliary
parameters to determine parameters for a proposed model from the
parameters of the current model. This must be a bijection.

Add factors to the Metropolis-Hastings acceptance ratio
accounting for the model moves and the mappings.

Now just follow the MH recipel
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Reversible jump example
Two models, Ml 10 M2 . 91,02
Two between-model moves (besides within-model moves):

e Go from 2 to 1 with probability r, setting

1
0==(6,+6
2( 1+ 62)
e Go from 1 to 2 with probability r, picking a random u and
setting
01 =0+ u; O=0—-u

Adjust the usual MH « by factors accounting for the move
probabilities, the dist'n for u, and the Jacobian

[0(6, u)/9(61,62)
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Birth-death MCMC
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Karnesis* (2014) - Modeling the LISA Pathfinder Technology Package
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FIG. 4. A RIMCMC run on a set of nested LTP models. There
is a clear preference for the five-dimensional model for the given
data set. The data were produced with a “perfect” model in which
the two respective actuators were identical

FIG. 2 (color online). First 3 x 10* iteration of the RIMCMC
output when comparing a seven- and a five-dimensional LTP
model (models X and Y. respectively). Since the models are not
competitive when the SNR = 60, the blue line tends asymptoti-
cally to zero.

Also:
e Umstaetter & Tinto (2008) — Detection of gravitational waves
from coalescing binaries (chirps)
e Stroeer & Veitch (2009) — Extracting WD binary signals from
LISA’s colored noise
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Birth-death MCMC
Setting
Competing models with different numbers of components of
the same form but with different parameter values:
e Finite mixture model for density estimation
e Superposition of pulses
e Superposition of (non)linear regression components
Approach
Represent the competing models as realizations of a marked
point process
oo &
Explore via birth—death—split—-merge moves; no auxiliary
parameters needed
44 / 47



130

Two rep ive GIG

Computation for model comparison
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—— S R e © Guidance
Bayesian droplet decomposition of BATSE GRB trigger #540
Broadbent™ (in prep.)

45 /47 46 / 47

Rough guidance
From 2003 and 2006 SAMSI programs

o Calculate marginal likelihoods directly when comparing a small set
of models; use trans-dimensional MCMC when exploring a large
model space (with a small but unknown subset likely to be favored)

e “It is important to try to implement more than one method and test
code on examples with known marginals, if nothing else because it
is very easy to make mistakes in coding!”

e Methods using posterior samples will likely require much longer runs
than are needed for parameter estimation; too-short runs can
produce severe errors

e Chib’s method often performs well when it can be easily
implemented; complex Gibbs sampling, and the M-H variant, appear
less stable

e Low-D (<15): Mixture-based importance sampling guided by
MCMC output is often easiest to implement with good accuracy
[also try cubature]

e Explore robustness to priors!

SAMSI '03 tech report, “Marginal Likelihood Computation: A Comparative Study” (Rui Paulo 2003)

SCMA '06 review paper, “Current Challenges in Bayesian Model Choice” (Clyde™ 2007) 47 /47





