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Observing and modeling cosmic populations
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Science goals
• Density estimation: Infer the distribution of source

characteristics, p(χ)

• Regression/Cond’l density estimation: Infer relationships
between different characteristics

• Map regression: Infer parameters defining the mapping from
characteristics to observables

Notably, seeking improved point estimates of source characteristics is
seldom a goal in astronomy.
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Accounting For Measurement Error
Introduce latent/hidden/incidental parameters

Suppose f (x |θ) is a distribution for an observable, x .

From N precisely measured samples, {xi}, we can infer θ from

L(θ) ≡ p({xi}|θ) =
∏

i

f (xi |θ)

p(θ|{xi}) ∝ p(θ)L(θ) = p(θ, {xi})

(A binomial point process)



Graphical representation

• Nodes/vertices = uncertain quantities (gray → known)
• Edges specify conditional dependence
• Absence of an edge denotes conditional independence

θ

x1 x2 xN

Graph specifies the form of the joint distribution:

p(θ, {xi}) = p(θ) p({xi}|θ) = p(θ)
∏

i

f (xi |θ)

Posterior from BT: p(θ|{xi}) = p(θ, {xi})/p({xi})



But what if the x data are noisy, Di = {xi + ǫi}?

{xi} are now uncertain (latent) parameters
We should somehow incorporate ℓi(xi ) = p(Di |xi ):

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})

= p(θ)
∏

i

f (xi |θ) ℓi (xi )

Marginalize over {xi} to summarize inferences for θ.
Marginalize over θ to summarize inferences for {xi}.

Key point: Maximizing over xi and integrating over xi can give
very different results!



To estimate x1:

p(x1|{x2, . . .}) =
∫

dθ p(θ) f (x1|θ) ℓ1(x1) ×
N∏

i=2

∫
dxi f (xi |θ) ℓi (xi)

= ℓ1(x1)
∫

dθ p(θ) f (x1|θ)Lm,1̆(θ)

≈ ℓ1(x1)f (x1|θ̂)

with θ̂ determined by the remaining data (EB)

f (x1|θ̂) behaves like a prior that shifts the x1 estimate away from
the peak of ℓ1(xi )

This generalizes the corrections derived by Eddington, Malmquist
and Lutz-Kelker (sans selection effects)

(Landy & Szalay (1992) proposed adaptive Malmquist corrections that
can be viewed as an approximation to this.)



Graphical representation
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θ
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p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})

= p(θ)
∏

i

f (xi |θ) p(Di |xi ) = p(θ)
∏

i

f (xi |θ) ℓi(xi )

(sometimes called a “two-level MLM” or “two-level hierarchical model”)



Measurement error models for cosmic populations
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Number counts, luminosity functions
GRB peak fluxes

Loredo & Wasserman 1993, 1995, 1998:
GRB luminosity/spatial dist’n via
hierarchical Bayes

TNO magnitudes

Gladman+1998, 2001, 2008:
TNO size distribution via
hierarchical Bayes



CB244 molecular cloud

Herschel data from Stutz+ 2010

SED properties vs. position

Kelly+2012: Dust parameter
correlations via hierarchical Bayes
β = power law modification index
Expect β → 0 for large grains



Schematic graphical model
Population
parametersθ

χ1 χ2

O1 O2

D2

χN

ON

DND1

Source
characteristics

Source
observables

Data

= "Random variable" node (has pdf)
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A directed acyclic graph (DAG)

Graph specifies the form of the joint distribution:

p(θ, {χi}, {Oi}, {Di}) = p(θ)
∏

i

p(χi |θ) p(Oi |χi) p(Di |Oi )

Posterior from Bayes’s theorem:

p(θ, {χi}, {Oi}|{Di}) = p(θ, {χi}, {Oi}, {Di}) / p({Di})



Plates
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“Two-level” effective models
Number counts

O = flux

θ

Di

Oi

N

Calculate flux dist’n using
“fundamental eqn” of stat astro
(Analytically/numerically
marginalize over χ = (L, r))

Dust SEDs
χ = spectrum params

χi

θ

Di

N

Observables = fluxes in bandpasses
Fluxes are deterministic in χi
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Selection effects

Selection effects enter via detection criteria

Detection is typically done by scanning over some domain:

• Imaging surveys: Scan an aperture or candidate source
location over 2-D sky direction (image coordinates)

• GRB surveys: Scan a time window over candidate event times

To account for selection effects, explicitly model the scan process



Ideal survey: Marked Poisson point process

Data = Precise detections {ti ,Fi} and non-detection info {∆tj}

Time

F
lu
x

δti

∆tj

GRB rate: Rρ(F ;P)

Non-detections:
pj = e−R∆tj

Detections:
pi = (Rδti ) e−Rδti ρ(Fi )

Total duration T

L(R ,P) ≡ p(D|R ,P) = e−RT ×
∏

i

(Rδt)ρ(Fi ;P)



Graphical model
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Actual survey: Thinned latent point process

Data = Detection times and flux likelihoods, ℓi(F ) (Gaussians)
+ exposure/efficiency (from threshold history)

Time

F
lu
x

δti

∆tj

Flux uncertainty

Truncation/thinning

Model as a thinned point process in the scan space (time), with
other variables as latent marks (flux)



Multilevel graphical model
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Actual survey: Thinned latent point process
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Flux uncertainty

Truncation/thinning

p(R ,P, {Fi},D) = p(R ,P) e−µ(R,P)
∏

i

(Rδt)ℓi (Fi )ρ(Fi ;P)

µ(R ,P) ≡
∫

T dt
∫
dF ǫ(t,F )R ρ(f ;P); ℓi(Fi ) ≡ p(Di |Fi )



Toy Example—Distribution of Source Magnitudes
Measure mi of sources following a “rolling power law” flux dist’n (i.e., a
“rolling exponential” magnitude dist’n; inspired by TNOs)

Σ(m) ∝ 10[α(m−23)+α
′(m−23)2]

m

(m)

23

α

Simulate 100 surveys of populations drawn from the same dist’n
Simulate data for photon-counting instrument, fixed count threshold
Measurements have uncertainties 1% (bright) to ≈ 30% (dim)
Analyze simulated data with maximum (“profile”) likelihood and Bayes



Parameter estimates from marginalization (circles) and maximum
likelihood (crosses):

Uncertainties don’t average out!



Benefits and requirements of cosmic MLMs

Benefits

• Selection effects quantified by non-detection data

• vs. V /Vmax and “debiasing” approaches

• Source uncertainties propagated via marginalization

• Adaptive generalization of Eddington/Malmquist “corrections”
• No single adjustment addresses source & pop’n estimation

Requirements

• Data summaries for non-detection intervals
(exposure, efficiency)

• Likelihood functions (not posterior dist’ns) for detected source
characteristics
(Perhaps a role for interim priors—see Merlise’s talk)
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Some Bayesian MLMs in astronomy
Surveys (number counts/“logN–log S”/Malmquist):
• GRB peak flux dist’n (Loredo & Wasserman 1998+)

• TNO/KBO magnitude distribution (Gladman+ 1998;
Petit+ 2008)

• Malmquist-type biases in cosmology; MLM tutorial
(Loredo & Hendry 2009 in BMIC book)

• “Extreme deconvolution” for proper motion surveys
(Bovy, Hogg, & Roweis 2011)

• Exoplanet populations (2014 Kepler workshop)

Directional & spatio-temporal coincidences:
• GRB repetition (Luo+ 1996; Graziani+ 1996)

• GRB host ID (Band 1998; Graziani+ 1999)

• VO cross-matching (Budavári & Szalay 2008)



Linear regression with measurement error:
• QSO hardness vs. luminosity (Kelly 2007)

Time series:
• SN 1987A neutrinos, uncertain energy vs. time (Loredo

& Lamb 2002)

• Multivariate “Bayesian Blocks” (Dobigeon, Tourneret &
Scargle 2007)

• SN Ia multicolor light curve modeling (Mandel+ 2009+)



Correlations/regression

QSO hardness vs. luminosity

Kelly 2007, 2011: Bayesian measurement error model



Probabilistic directional cross-matching
UHE cosmic rays & nearby AGN
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Hierarchical Bayesian cross-matching (learn the graph!):
• GRBs: CU group, UChicago group 1996
• Galaxies: Budavári & Szalay 2008 (approx.)
• UHE CRs: Soiaporn+2013
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θ Astrophysical model parameters

Sites, labels/partition{nk, λi} λi = k : Di assigned to nk



How far we’ve come
SN 1987A neutrinos, 1990

Marked Poisson point process
Background,

thinning/truncation,
measurement error

θ

D

t, ǫ

N

t, ǫ

D

N

Model checking via
examining conditional
predictive dist’ns

SN Ia light curves
Mandel 2009, 2011

Nonlinear regression,
Gaussian process regression,

measurement error

Model checking via cross validation
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Information transfer and MLM predictive checking
Hyperpriors

• Information gain from the data tends to weaken at higher levels
• Lower-level inferences can be robust to hyperpriors
• Pop’n-level inferences can be sensitive to hyperpriors
• Improper hyperpriors can be trouble; even diffuse proper priors can

be trouble
• Upper-level variances and covariance matrices are particularly

troublesome

Model checking

• Assumptions made about latent parameter dist’ns are hard to
check/validate

• Posterior predictive checks are available specifically for MLMs:
Sinharay & Stern (2003); Bayarri+ (2007)

• Sinharay & Stern (2003): “It is very difficult to detect violations of
the assumptions made about the population distribution unless the
extent of violation is huge or the observed data have small standard
errors.”



Nonparametric estimation with scatter

Farewell, root-N!

Simplest case: Estimate Σ(m) from noisy measurements:

mi ∼ Σ(m) (iid)
mi ,obs = mi + ǫi , p(ǫi) known

This is known as density deconvolution or as mixing density
estimation

Methods are available using KDE, but convergence can be
extremely poor—even the optimal rate is extremely poor

Performance depends strongly on the error distribution



“Smooth” error dist’ns (e.g., Gamma, Laplace)
Characteristic function falls as power law, ∼ |t|−β

Slow polynomial convergence, e.g. ∼ O(1/n1/6)

“Supersmooth” error dist’ns (e.g., Normal, Cauchy)

Characteristic function falls exponentially, ∼ e−|t|β/γ

Logarithmic convergence, e.g. ∼ O
(
(log n)−1/2

)
— yikes!

Convergence also slows as target Σ(m) gets smoother



Role of nonparametric deconvolution/demixing
• Rates are discouraging:

The problem of consistent estimation is effectively insoluble in
practical terms. . . . Even when the rate is polynomial, it is
often particularly slow unless the [error density] contains a
discontinuity (Carroll & Hall ’04)

• Limited literature on multivariate density deconvolution
indicates similar behavior > 1-D

• Many methods assume homoscedasticity; very little work on
deconvolution + selection (Stefanski & Bay ’96; Zhang+ ’00)

• Adding some parametric info may help a lot
(Splines—Mendelsohn & Rice ’82; Berry+ ’02;
semiparametric Bayes—Carroll et al. ’04)

Efromovitch 1997 (adaptive nonlinear deconvolution) — Role is for
“for visualizing an underlying density. . . and serving as a tool to
suggest an appropriate parametric model . . . ”



Detection:
Thresholding vs. adaptive soft classification

Setting: Counting sources (real vs. spurious)
Measure N = 100 objects with additive Gaussian noise, σ = 1:

• 30 have A = 2.2
• 70 have A = 0

Detect via 100 tests of H0 : A = 0

Detection Result:
Source Present Negative Positive Total

H0: No T− F+ ν0

H1: Yes F− T+ ν1

Total N− N+ N



Thresholding Controlling FWER and FDR
Threshold criteria:

• Control family-wise error rate at level α: accept objects with
p-valuesp = α/N, aiming to not make a single false discovery
→ 9 (accurate) discoveries for FWER = 20%

• Control false discovery rate, 〈F+/N+〉 = 20% via
Benjamini-Hochberg → 25 discoveries (4 false)

• Other choices possible
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Rejected 25 nulls in 100 tests
30 true non-nulls present

4 false discoveries

100% null prediction
20% FDR cutoff
FDR null accepted
FDR null rejected
FW null rejected

Issue with FRD control:
Astronomers will use detections to
infer distributions; will be biased
for dim sources



Multilevel Model Approach

Let f = fraction of objects with A = 2.2.

If f were known, it would the prior probability for a Bayesian odds
calculation.

Treat f as unknown (flat prior); infer it from the data:
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p(f|D)
One can say there are about 30
sources present, without being
able to say for sure whether many
of the candidates are sources or
not.
Caution: The “upper level” prior
needs some care in more complex
settings (Scott & Berger 2008;
MLM literature)



Likelihood function catalogs
MLM lessons

• Data are conditionally independent at lowest level
• Data enter both source-level and population-level inference via

ℓi(O) ≡ p(Di |O)
• No collection of point estimates is optimal for both source-level and

population-level inference

Implications for survey reporting

• Report ℓi(O) to enable optimal inferences
• Naive likelihood summaries are not optimal estimates of source

properties
• The required summaries are not pdfs for source properties;

independent pdfs are typically not possible
• Report probabilistic summaries of non-detection data
• For targeted (counterpart) surveys replace “upper limits” with ℓi(O)

summaries for candidate sources

This is in progress for CFHTLS galaxy shapes. . .



Exchangeability

A joint distribution p(n1, n2, n3, . . . |M) is exchangeable if it takes
the same form if we permute the arguments:

p(n1, n2, n3, . . . |M) = p(n2, n1, n3, . . . |M) etc.

An IID distribution is exchangeable:

p(n1, n2, n3, . . . |M) = f (n1)f (n2)f (n3) · · ·
p(n2, n1, n3, . . . |M) = f (n2)f (n1)f (n3) · · ·

But exchangeability is weaker; it allows dependence

This sets the stage for sharing of information between samples, so
learning n1 affects predictions for the other nk .



De Finetti’s Exchangeability Theorem

Any exchangeable distribution∗ can be written

p(n1, n2, n3, . . . , nN |M) =
∫

dθ π(θ)
N∏

i=1

f (ni |θ)

i.e., as a mixture of conditionally independent distributions sharing
an uncertain parameter. Roughly speaking, we can think of the
connection between the ni as arising from the shared parameter, θ.

[For further discussion, see Loredo & Hendry (2009).]

∗The theorem applies for any finite subset of variables from an infinite set. If the

number of variables is intrinsically finite, some distributions with negative correlations

cannot be represented this way.



Recap of Key Ideas

• Latent parameters for measurement error

• Thinned latent marked point process models

• Roles of source likelihoods, nondetection data

• Role of marginalization over source uncertainties
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