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MCMC:  A Science & an Art 

ÅScience: 
If your algorithm is designed properly, the 
Markov chain will converge to the target 
ŘƛǎǘǊƛōǳǘƛƻƴΧ ŀŦǘŜǊ ƛƴŦƛƴƛǘŜ ƛǘŜǊŀǘƛƻƴǎ 

ÅArt: 
When is it wise to make inferences based on a 
finite Markov chain 



Assessing Convergence is Essential 

If you want to: 

ÅBase your conclusions on posterior distributions 

ÅReport accurate parameter estimates & 
uncertainties  

ÅAvoid fooling yourself 

ÅAvoid devoting resources (e.g., your effort,  
telescope time) to follow-ǳǇ ŀƴ άƛƴŦŜǊŜƴŎŜέ ǘƘŀǘ  
ƛǎƴΩǘ ǎǳǇǇƻǊǘŜŘ ōȅ Řŀǘŀ 

ÅAvoid writing an erratum to your paper 

 

 



A Simple Example 

This target distribution:   p(x,y) = p(x) p(y), 
where 

Åp(x) is LogNormal (zero mean, unit scale) 

 

 

Åp(y) is InverseGamma (unit shape, unit scale) 

 

 



Has this Chain Converged? 
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Positive Indications 

ÅAny sufficiently large segment of Markov chain 
would give similar results 
ÅDesirable acceptance rate of proposed steps 
Å/Ƙŀƛƴ άƳƛȄŜǎ ǿŜƭƭέ  όƛΦŜΦΣ ŎƘŀƛƴ Ƙŀǎ Ǌǳƴ ƳǳŎƘ 

longer than any observed timescale for 
correlation between samples) 
ÅMultiple chains initialized from different initial 

conditions give similar results 
ÅMCMC analysis of similar problem using 

simulated data give accurate results, even with 
significantly fewer iterations 

 



²Ƙȅ hƴƭȅ άaŀȅōŜέΚ 

Å̧ ƻǳ ŎŀƴΩǘ ǇǊƻǾŜ ŎƻƴǾŜǊƎŜƴŎŜ 
ïAt best, you fail to prove a failure to converge 

ÅConvergence rate can be exponentially 
sensitive to barriers between local modes. 

ÅWhat if your posterior has heavy tails? 

ÅWhat ƛŦ ǘƘŜǊŜΩǎ ŀ ƴŀǊǊƻǿ ōƻǘǘƭŜƴŜŎƪ ōŜǘǿŜŜƴ 
two regions of high probability? 

Å²Ƙŀǘ ƛŦ ǘƘŜǊŜΩǎ ŀƴƻǘƘŜǊ ǇƻǎǘŜǊƛƻǊ ƳƻŘŜ ǘƘŀǘ 
ǿŜΩǾŜ ŎƻƳǇƭŜǘŜƭȅ ƻǾŜǊƭƻƻƪŜŘΚ 



What should I do? 

ÅBe paranoid 

ÅRun chains longer than you think you need to 

ÅCompute several Markov chains 

ïinitialized with significantly different initial states 

ÅLook at your Markov chains yourself 

ïTrace plots 

ïMarginal joint densities 



What warning signs should  
I be looking for? 

ÅDifferences within or across Markov chains 

ÅάtƻƻǊ ƳƛȄƛƴƎέ 

ÅLow/high acceptance rates (excluding any Gibbs steps) 

ÅAutocorrelation between states of Markov chain 

ÅStrongly correlated parameters 

ÅSuspicious posterior shapes 

 



Check Autocorrelation of Markov chain 

ÅAutocorrelation as a function of lag 
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 όCƻǊ ŎƻƳǇǳǘƛƴƎ ŀǳǘƻŎƻǊǊŜƭŀǘƛƻƴǎ ŀǘ Ƴŀƴȅ ƭŀƎǎΣ ƛǘΩǎ ŦŀǎǘŜǊ  
ǘƻ ǳǎŜ ŀƴ CC¢ҍōŀǎŜŘ ƳŜǘƘƻŘύ 

ÅWhat is smallest lag to give an ĺag Ғ 0? 

ÅOne of several methods for estimating how 
many iterations of Markov chain are needed 
for effectively independent samples 



Checking Autocorrelation Function 



Getting More Quantitative 

Calculate convergence diagnostics 
ÅGeweke (1992): Compares means calculated from distinct 

segments of Markov chain 
ÅRaftery & Lewis (1992):  Estimates the minimum chain 

length needed to estimate a percentile to some precision  
 

ÅGelman & Rubin (1992):      compares variances between 
chains 

ÅBrooks & Gelman (1998):  Several generalizations of  
ïAccount for covariances 
ïCan apply to higher moments 
ïScale reduction for arbitrary credible intervals 



Estimate Potential Scale Reduction Factor 
Gelman-Rubin diagnostic  (     ) 
Å Compute m independent Markov chains 
Å Compares variance of each chain to pooled variance 
Å If initial states (̒1j) are overdispersed, then     approaches unity from above 
Å Provides estimate of how much variance could be reduced by running chains 

longer 
Å It is an estimate! 



Estimate Potential Scale Reduction Factor 

Bare Minimum: 

ÅCheck     for each model parameter 

ÅCheck     for any important functions of model 
parameters 

Better: 

ÅConsider applying a generalization that checks 
for covariances, moments or intervals of interest 



Estimate Potential Scale Reduction Factor 

Returning to previous example: 

ÅGelman-Rubin diagnostic (   ) is <1.001 

ÅConsider generalized statistic 
 
 
for central (1- )h credible interval 

ÅPlot as function of h 
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Test using Simplified Problems where 
You Can Compare to Target Density 

This target distribution for the first example was: 

Åp(x,y) = p(x) p(y) 

Åp(x) is LogNormal (zero mean, unit scale) 

 

 

Åp(y) is InverseGamma (unit shape, unit scale) 

 

 



Test using Simplified Problems where 
You Can Compare to Target Density 



Use Problematic Runs to  
Improve Your Algorithm 

ÅWhy did our Markov chains struggle on a 
relatively simple target distribution? 

ÅHow could we change our algorithm to 
accelerate convergence? 

ïChange of variables 

ïChange proposal distribution 

ïChange MCMC algorithm 

ÅMake use of physical intuition 

ÅIncorporate some Gibbs steps 
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