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Likelihood-Based Parametric Bootstrapping

Likelihood L(θ) ≡ p(Dobs|θ).
Log-likelihood L(θ) = lnL(θ).

For the Gaussian example,

L(µ) =
∏
i

1

σ
√

2π
exp

[
−(xi − µ)2

2σ2

]
∝

∏
i

exp

[
−(xi − µ)2

2σ2

]
L(µ) = −1

2

∑
i

(xi − µ)2

σ2
+ Const

= −χ
2(µ)

2
+ Const
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Incorrect Parametric Bootstrapping

A

T

P = (A, T )

✦

P̂(Dobs)

Histograms/contours of best-fit estimates from D ∼ p(D|θ̂(Dobs))
provide poor confidence regions—no better (possibly worse) than
using a least-squares/χ2 covariance matrix.

What’s wrong with the population of θ̂ points for this purpose?

The estimates are skewed down and to the right, indicating the
truth must be up and to the left. Do not mistake variability of the
estimator with the uncertainty of the estimate!
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Key idea: Use likelihood ratios to define confidence regions.
I.e., use L or χ2 differences to define regions.

Estimate parameter values via maximum likelihood (minχ2)
→ Lmax.
Pick a constant ∆L. Then

∆(D) = {θ : L(θ) > Lmax −∆L}

Coverage calculation:

1. Fix θ0 = θ̂(Dobs) (plug-in approx’n)
2. Simulate a dataset from p(D|θ0) → LD(θ)
3. Find maximum likelihood estimate θ̂(D)
4. Calculate ∆L = LD(θ̂D)− LD(θ0)
5. Goto (2) for N total iterations
6. Histogram the ∆L values to find coverage vs. ∆L

(fraction of sim’ns with smaller ∆L)

Report ∆(Dobs) with ∆L chosen for desired approximate CL.
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∆L Calibration Reported Region

A

T

✦

A

T

✦

The CL is approximate due to:

• Monte Carlo error in calibrating ∆L

• The plug-in approximation
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Credible Region Via Posterior Sampling
Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample θ from p(θ|Dobs)
2. Draw N samples; record θi and qi = π(θi )L(µi )
3. Sort the samples by the qi values
4. An HPD region of probability P is the θ region spanned

by the 100P% of samples with highest qi

Note that no dataset other than Dobs is ever considered.
P is a property of the particular interval reported.

A

T

✦
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This complication is the rule rather than the exception!

Simple example: Estimate the mean and standard deviation of a
normal distribution (µ = 5, σ = 1, N = 5; 200 samples):

(See TL’s arXiv:1208.3036 for discussion)
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Binary Outcomes:
Parameter Estimation

M = Existence of two outcomes, S and F ; for each case or trial,
the probability for S is α; for F it is (1− α)

Hi = Statements about α, the probability for success on the next
trial → seek p(α|D,M)

D = Sequence of results from N observed trials:

FFSSSSFSSSFS (n = 8 successes in N = 12 trials)

Likelihood:

p(D|α,M) = p(failure|α,M)× p(failure|α,M)× · · ·
= αn(1− α)N−n

= L(α)
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Prior

Starting with no information about α beyond its definition,
use as an “uninformative” prior p(α|M) = 1. Justifications:

• Intuition: Don’t prefer any α interval to any other of same size
• Bayes’s justification: “Ignorance” means that before doing the

N trials, we have no preference for how many will be successes:

P(n success|M) =
1

N + 1
→ p(α|M) = 1

Consider this a convention—an assumption added to M to
make the problem well posed.
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Prior Predictive

p(D|M) =

∫
dα αn(1− α)N−n

= B(n + 1,N − n + 1) =
n!(N − n)!

(N + 1)!

A Beta integral, B(a, b) ≡
∫
dx xa−1(1− x)b−1 = Γ(a)Γ(b)

Γ(a+b) .
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Posterior

p(α|D,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

A Beta distribution. Summaries:

• Best-fit: α̂ = n
N = 2/3; 〈α〉 = n+1

N+2 ≈ 0.64

• Uncertainty: σα =
√

(n+1)(N−n+1)
(N+2)2(N+3)

≈ 0.12

Find credible regions numerically, or with incomplete beta
function

Note that the posterior depends on the data only through n,
not the N binary numbers describing the sequence.

n is a (minimal) sufficient statistic.
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Binary Outcomes: Model Comparison
Equal Probabilities?

M1: α = 1/2
M2: α ∈ [0, 1] with flat prior.

Maximum Likelihoods

M1 : p(D|M1) =
1

2N
= 2.44× 10−4

M2 : L(α̂) =

(
2

3

)n (1

3

)N−n
= 4.82× 10−4

p(D|M1)

p(D|α̂,M2)
= 0.51

Maximum likelihoods favor M2 (failures more probable).
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Bayes Factor (ratio of model likelihoods)

p(D|M1) =
1

2N
; and p(D|M2) =

n!(N − n)!

(N + 1)!

→ B12 ≡
p(D|M1)

p(D|M2)
=

(N + 1)!

n!(N − n)!2N

= 1.57

Bayes factor (odds) favors M1 (equiprobable).

Note that for n = 6, B12 = 2.93; for this small amount of
data, we can never be very sure results are equiprobable.

If n = 0, B12 ≈ 1/315; if n = 2, B12 ≈ 1/4.8; for extreme
data, 12 flips can be enough to lead us to strongly suspect
outcomes have different probabilities.

(Frequentist significance tests can reject null for any sample size.)
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Binary Outcomes: Binomial Distribution
Suppose D = n (number of heads in N trials), rather than the
actual sequence. What is p(α|n,M)?

Likelihood

Let S = a sequence of flips with n heads.

p(n|α,M) =
∑
S

p(S |α,M) p(n|S, α,M)
αn (1− α)N−n

J # successes = nK

= αn(1− α)N−nCn,N

Cn,N = # of sequences of length N with n heads.

→ p(n|α,M) =
N!

n!(N − n)!
αn(1− α)N−n

The binomial distribution for n given α, N.
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Posterior

p(α|n,M) =

N!
n!(N−n)!α

n(1− α)N−n

p(n|M)

p(n|M) =
N!

n!(N − n)!

∫
dα αn(1− α)N−n

=
1

N + 1

→ p(α|n,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

Same result as when data specified the actual sequence.
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Another Variation: Negative Binomial

Suppose D = N, the number of trials it took to obtain a predifined
number of successes, n = 8. What is p(α|N,M)?

Likelihood

p(N|α,M) is probability for n − 1 successes in N − 1 trials,
times probability that the final trial is a success:

p(N|α,M) =
(N − 1)!

(n − 1)!(N − n)!
αn−1(1− α)N−nα

=
(N − 1)!

(n − 1)!(N − n)!
αn(1− α)N−n

The negative binomial distribution for N given α, n.
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Posterior

p(α|D,M) = C ′n,N
αn(1− α)N−n

p(D|M)

p(D|M) = C ′n,N

∫
dα αn(1− α)N−n

→ p(α|D,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

Same result as other cases.
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Final Variation: “Meteorological Stopping”

Suppose D = (N, n), the number of samples and number of
successes in an observing run whose total number was determined
by the weather at the telescope. What is p(α|D,M ′)?

(M ′ adds info about weather to M.)

Likelihood

p(D|α,M ′) is the binomial distribution times the probability
that the weather allowed N samples, W (N):

p(D|α,M ′) = W (N)
N!

n!(N − n)!
αn(1− α)N−n

Let Cn,N = W (N)
(N
n

)
. We get the same result as before!
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Likelihood Principle

To define L(Hi ) = p(Dobs|Hi , I ), we must contemplate what other
data we might have obtained. But the “real” sample space may be
determined by many complicated, seemingly irrelevant factors; it
may not be well-specified at all. Should this concern us?

Likelihood principle: The result of inferences depends only on how
p(Dobs|Hi , I ) varies w.r.t. hypotheses. We can ignore aspects of the
observing/sampling procedure that do not affect this dependence.

This happens because no sums of probabilities for hypothetical
data appear in Bayesian results; Bayesian calculations condition on
Dobs.

This is a sensible property that frequentist methods do not share.
Frequentist probabilities are “long run” rates of performance, and
depend on details of the sample space that are irrelevant in a
Bayesian calculation.
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Goodness-of-fit Violates the Likelihood Principle

Theory (H0)

The number of “A” stars in a cluster should be 0.1 of the
total.

Observations

5 A stars found out of 96 total stars observed.

Theorist’s analysis

Calculate χ2 using n̄A = 9.6 and n̄X = 86.4.

Significance level is p(> χ2|H0) = 0.12 (or 0.07 using more
rigorous binomial tail area). Theory is accepted.
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Observer’s analysis

Actual observing plan was to keep observing until 5 A stars
seen!

“Random” quantity is Ntot, not nA; it should follow the
negative binomial dist’n. Expect Ntot = 50± 21.

p(> χ2|H0) = 0.03. Theory is rejected.

Telescope technician’s analysis

A storm was coming in, so the observations would have ended
whether 5 A stars had been seen or not. The proper ensemble
should take into account p(storm) . . .

Bayesian analysis

The Bayes factor is the same for binomial or negative binomial
likelihoods, and slightly favors H0. Include p(storm) if you
want—it will drop out!
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Probability & frequency

Frequencies are relevant when modeling repeated trials, or
repeated sampling from a population or ensemble.

Frequencies are observables

• When available, can be used to infer probabilities for next trial

• When unavailable, can be predicted

Bayesian/Frequentist relationships

• Relationships between probability and frequency

• Long-run performance of Bayesian procedures
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Probability & frequency in IID settings
Frequency from probability

Bernoulli’s law of large numbers: In repeated i.i.d. trials, given
P(success| . . .) = α, predict

nsuccess

Ntotal
→ α as Ntotal →∞

If p(x) does not change from sample to sample, it may be
interpreted as a frequency distribution.

Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the Doctrine
of Chances” → First use of Bayes’s theorem:

Probability for success in next trial of i.i.d. sequence:

E(α)→ nsuccess

Ntotal
as Ntotal →∞

If p(x) does not change from sample to sample, it may be
estimated from a frequency distribution.
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Inference With Normals/Gaussians

Gaussian PDF

p(x |µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 over [−∞,∞]

Common abbreviated notation: x ∼ N(µ, σ2)

Parameters

µ = 〈x〉 ≡
∫

dx x p(x |µ, σ)

σ2 = 〈(x − µ)2〉 ≡
∫

dx (x − µ)2 p(x |µ, σ)
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Gauss’s Observation: Sufficiency

Suppose our data consist of N measurements, di = µ+ εi .
Suppose the noise contributions are independent, and
εi ∼ N (0, σ2).

p(D|µ, σ,M) =
∏
i

p(di |µ, σ,M)

=
∏
i

p(εi = di − µ|µ, σ,M)

=
∏
i

1

σ
√

2π
exp

[
−(di − µ)2

2σ2

]
=

1

σN(2π)N/2
e−Q(µ)/2σ2
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Find dependence of Q on µ by completing the square:

Q =
∑
i

(di − µ)2 [Note: Q/σ2 = χ2(µ)]

=
∑
i

d2
i +

∑
i

µ2 − 2
∑
i

diµ

=

(∑
i

d2
i

)
+ Nµ2 − 2Nµd where d ≡ 1

N

∑
i

di

= N(µ− d)2 +

(∑
i

d2
i

)
− Nd

2

= N(µ− d)2 + Nr2 where r2 ≡ 1

N

∑
i

(di − d)2
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Likelihood depends on {di} only through d and r :

L(µ, σ) =
1

σN(2π)N/2
exp

(
−Nr2

2σ2

)
exp

(
−N(µ− d)2

2σ2

)
The sample mean and variance are sufficient statistics.

This is a miraculous compression of information—the normal dist’n
is highly abnormal in this respect!

32 / 75



Estimating a Normal Mean

Problem specification

Model: di = µ+ εi , εi ∼ N(0, σ2), σ is known → I = (σ,M).

Parameter space: µ; seek p(µ|D, σ,M)

Likelihood

p(D|µ, σ,M) =
1

σN(2π)N/2
exp

(
−Nr2

2σ2

)
exp

(
−N(µ− d)2

2σ2

)
∝ exp

(
−N(µ− d)2

2σ2

)
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“Uninformative” prior

Translation invariance ⇒ p(µ) ∝ C , a constant.
This prior is improper unless bounded.

Prior predictive/normalization

p(D|σ,M) =

∫
dµ C exp

(
−N(µ− d)2

2σ2

)
= C (σ/

√
N)
√

2π

. . . minus a tiny bit from tails, using a proper prior.
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Posterior

p(µ|D, σ,M) =
1

(σ/
√
N)
√

2π
exp

(
−N(µ− d)2

2σ2

)
Posterior is N(d ,w2), with standard deviation w = σ/

√
N.

68.3% HPD credible region for µ is d ± σ/
√
N.

Note that C drops out → limit of infinite prior range is well
behaved.
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Informative Conjugate Prior

Use a normal prior, µ ∼ N(µ0,w
2
0 ).

Conjugate because the posterior turns out also to be normal.

Posterior

Normal N(µ̃, w̃2), but mean, std. deviation “shrink” towards
prior.

Define B = w2

w2+w2
0

, so B < 1 and B = 0 when w0 is large.

Then

µ̃ = d + B · (µ0 − d)

w̃ = w ·
√

1− B

“Principle of stable estimation” — The prior affects estimates
only when data are not informative relative to prior.
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Conjugate normal examples:

• Data have d = 3, σ/
√
N = 1

• Priors at µ0 = 10, with w = {5, 2}

0 5 10 15 20
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
(x
|�

)

Prior

L
Post.

0 5 10 15 20
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
(x
|�

)
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Estimating a Normal Mean: Unknown σ

Problem specification

Model: di = µ+ εi , εi ∼ N(0, σ2), σ is unknown

Parameter space: (µ, σ); seek p(µ|D,M)

Likelihood

p(D|µ, σ,M) =
1

σN(2π)N/2
exp

(
−Nr2

2σ2

)
exp

(
−N(µ− d)2

2σ2

)
∝ 1

σN
e−Q/2σ2

where Q = N
[
r2 + (µ− d)2

]
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Uninformative Priors

Assume priors for µ and σ are independent.

Translation invariance ⇒ p(µ) ∝ C , a constant.

Scale invariance ⇒ p(σ) ∝ 1/σ (flat in log σ).

Joint Posterior for µ, σ

p(µ, σ|D,M) ∝ 1

σN+1
e−Q(µ)/2σ2
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Marginal Posterior

p(µ|D,M) ∝
∫

dσ
1

σN+1
e−Q/2σ2

Let τ = Q
2σ2 so σ =

√
Q
2τ and |dσ| = τ−3/2

√
Q
2 dτ

⇒ p(µ|D,M) ∝ 2N/2Q−N/2

∫
dτ τ

N
2
−1e−τ

∝ Q−N/2
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Write Q = Nr2

[
1 +

(
µ−d
r

)2
]

and normalize:

p(µ|D,M) =

(
N
2 − 1

)
!(

N
2 − 3

2

)
!
√
π

1

r

[
1 +

1

N

(
µ− d

r/
√
N

)2
]−N/2

“Student’s t distribution,” with t = (µ−d)

r/
√
N

A “bell curve,” but with power-law tails

Large N:

p(µ|D,M) ∼ e−N(µ−d)2/2r2

This is the rigorous way to “adjust σ so χ2/dof = 1.”

It doesn’t just plug in a best σ; it slightly broadens posterior
to account for σ uncertainty.
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Student t examples:

• p(x) ∝ 1(
1+ x2

n

) n+1
2

• Location = 0, scale = 1

• Degrees of freedom = {1, 2, 3, 5, 10,∞}

�4 �2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

p
(x

)

1

2

3

5

10

normal
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Gaussian Background Subtraction

Measure background rate b = b̂ ± σb with source off.

Measure total rate r = r̂ ± σr with source on.

Infer signal source strength s, where r = s + b.

With flat priors,

p(s, b|D,M) ∝ exp

[
−(b − b̂)2

2σ2
b

]
× exp

[
−(s + b − r̂)2

2σ2
r

]
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Marginalize b to summarize the results for s (complete the square
to isolate b dependence; then do a simple Gaussian integral over
b):

p(s|D,M) ∝ exp

[
−(s − ŝ)2

2σ2
s

]
ŝ = r̂ − b̂
σ2
s = σ2

r + σ2
b

⇒ Background subtraction is a special case of background
marginalization; i.e., marginalization “told us” to subtract a
background estimate.

Recall the standard derivation of background uncertainty via
“propagation of errors” based on Taylor expansion (statistician’s
Delta-method).

Marginalization provides a generalization of error
propagation—without approximation!
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Poisson Dist’n: Infer a Rate from Counts

Problem:

Observe n counts in T ; infer rate, r

Likelihood

L(r) ≡ p(n|r ,M) = p(n|r ,M) =
(rT )n

n!
e−rT

Prior

Two simple standard choices (or conjugate gamma dist’n):

• r known to be nonzero; it is a scale parameter:

p(r |M) =
1

ln(ru/rl)

1

r

• r may vanish; require p(n|M) ∼ Const:

p(r |M) =
1

ru
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Prior predictive

p(n|M) =
1

ru

1

n!

∫ ru

0
dr(rT )ne−rT

=
1

ruT

1

n!

∫ ruT

0
d(rT )(rT )ne−rT

≈ 1

ruT
for ru �

n

T

Posterior

A gamma distribution:

p(r |n,M) =
T (rT )n

n!
e−rT
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Gamma Distributions

A 2-parameter family of distributions over nonnegative x , with
shape parameter α and scale parameter s:

pΓ(x |α, s) =
1

sΓ(α)

(x
s

)α−1
e−x/s

Moments:

E(x) = sα Var(x) = s2α

Our posterior corresponds to α = n + 1, s = 1/T .

• Mode r̂ = n
T ; mean 〈r〉 = n+1

T (shift down 1 with 1/r prior)

• Std. dev’n σr =
√
n+1
T ; credible regions found by integrating (can

use incomplete gamma function)
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Conjugate prior

Note that a gamma distribution prior is the conjugate prior for
the Poisson sampling distribution:

p(r |n,M ′) ∝ Gamma(r |α, s)× Pois(n|rT )

∝ rα−1e−r/s × rne−rT

∝ rα+n−1 exp[−r(T + 1/s)]

For α = 1, s →∞, the gamma prior becomes an
“uninformative” flat prior; posterior is proper even for n = 0

Useful conventions

• Use a flat prior for a rate that may be zero

• Use a log-flat prior (∝ 1/r) for a nonzero scale parameter

• Use proper (normalized, bounded) priors

• Plot posterior with abscissa that makes prior flat (use log r
abscissa for scale parameter case)
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Infer a Signal in a Known Background

Problem:
As before, but r = s + b with b known; infer s

p(s|n, b,M) = C
T [(s + b)T ]n

n!
e−(s+b)T

C−1 =
e−bT

n!

∫ ∞
0

d(sT ) (s + b)nT ne−sT

=
n∑

i=0

(bT )i

i !
e−bT

A sum of Poisson probabilities for background events; it can be
evaluated using the incomplete gamma function. (Helene 1983)

51 / 75



The On/Off Problem

Basic problem

• Look off-source; unknown background rate b
Count Noff photons in interval Toff

• Look on-source; rate is r = s + b with unknown signal s
Count Non photons in interval Ton

• Infer s

Conventional solution

b̂ = Noff/Toff ; σb =
√
Noff/Toff

r̂ = Non/Ton; σr =
√
Non/Ton

ŝ = r̂ − b̂; σs =
√
σ2
r + σ2

b

But ŝ can be negative!
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Bayesian Solution to On/Off Problem

First consider off-source data; use it to estimate b:

p(b|Noff , Ioff) =
Toff(bToff)Noff e−bToff

Noff !

Use this as a prior for b to analyze on-source data. For on-source
analysis Iall = (Ion,Noff , Ioff):

p(s, b|Non) ∝ p(s)p(b)[(s + b)Ton]None−(s+b)Ton || Iall

p(s|Iall) is flat, but p(b|Iall) = p(b|Noff , Ioff), so

p(s, b|Non, Iall) ∝ (s + b)NonbNoff e−sTone−b(Ton+Toff)
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Now marginalize over b;

p(s|Non, Iall) =

∫
db p(s, b | Non, Iall)

∝
∫

db (s + b)NonbNoff e−sTone−b(Ton+Toff)

Expand (s + b)Non and do the resulting Γ integrals:

p(s|Non, Iall) =
Non∑
i=0

Ci
Ton(sTon)ie−sTon

i !

Ci ∝
(

1 +
Toff

Ton

)i
(Non + Noff − i)!

(Non − i)!

Posterior is a weighted sum of Gamma distributions, each assigning a
different number of on-source counts to the source. (Evaluate via
recursive algorithm or confluent hypergeometric function.)
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Example On/Off Posteriors—Short Integrations

Ton = 1
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Example On/Off Posteriors—Long Background Integrations

Ton = 1
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Second Solution of the On/Off Problem

Consider all the data at once; the likelihood is a product of Poisson
distributions for the on- and off-source counts:

L(s, b) ≡ p(Non,Noff |s, b, I )
∝ [(s + b)Ton]None−(s+b)Ton × (bToff)Noff e−bToff

Take joint prior to be flat; find the joint posterior and marginalize
over b;

p(s|Non, Ion) =

∫
db p(s, b|I )L(s, b)

∝
∫

db (s + b)NonbNoff e−sTone−b(Ton+Toff)

→ same result as before.
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Third Solution: Data Augmentation
Suppose we knew the number of on-source counts that are from
the background, Nb. Then the on-source likelihood is simple:

p(Non|s,Nb, Iall) = Pois(Non − Nb; sTon) =
(sTon)Non−Nb

(Non − Nb)!
e−sTon

Data augmentation: Pretend you have the “missing data,” then
marginalize to account for its uncertainty:

p(Non|s, Iall) =
Non∑
Nb=0

p(Nb|Iall) p(Non|s,Nb, Iall)

=
∑
Nb

Predictive for Nb × Pois(Non − Nb; sTon)

p(Nb|Iall) =

∫
db p(b|Noff , Ioff) p(Nb|b, Ion)

=

∫
db Gamma(b)× Pois(Nb; bTon)

→ same result as before.
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A profound consistency

We solved the on/off problem in multiple ways, always finding the
same final results.

This reflects something fundamental about Bayesian inference.

R. T. Cox proposed two necessary conditions for a quantification of
uncertainty:

• It should duplicate deductive logic when there is no
uncertainty

• Different decompositions of arguments should produce the
same final quantifications (internal consistency)

Great surprise: These conditions are sufficient; they lead to the
probability axioms. E. T. Jaynes and others refined and simplified
Cox’s analysis.
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Multibin On/Off

The more typical on/off scenario:

Data = spectrum or image with counts in many bins

Model M gives signal rate sk(θ) in bin k , parameters θ

To infer θ, we need the likelihood:

L(θ) =
∏
k

p(Nonk ,Noffk |sk(θ),M)

For each k , we have an on/off problem as before, only we just
need the marginal likelihood for sk (not the posterior). The same
Ci coefficients arise.

XSPEC and CIAO/Sherpa provide this as an option

van Dyk+(2001) does the same thing via data augmentation (Monte
Carlo)
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Supplemental Topics

1 Parametric bootstrapping vs. posterior sampling

2 Estimation and model comparison for binary
outcomes

3 Basic inference with normal errors

4 Poisson distribution; the on/off problem

5 Assigning priors
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Well-Posed Problems
The rules (BT, LTP, . . . ) express desired probabilities in terms of
other probabilities

To get a numerical value out, at some point we have to put
numerical values in

Direct probabilities are probabilities with numerical values
determined directly by premises (via modeling assumptions,
symmetry arguments, previous calculations, desperate
presumption . . . )

An inference problem is well posed only if all the needed
probabilities are assignable based on the context. We may need to
add new assumptions as we see what needs to be assigned. We
may not be entirely comfortable with what we need to assume!
(Remember Euclid’s fifth postulate!)

Should explore how results depend on uncomfortable assumptions
(“robustness”)
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Contextual/prior/background information

Bayes’s theorem moves the data and hypothesis propositions wrt
the solidus:

P(Hi |Dobs, I ) = P(Hi |I )
P(Dobs|Hi , I )

P(Dobs|I )

It lets us change the premises

“Prior information” or “background information” or “context” =
information that is always a premise (for the current calculation)

Notation: P(·|·, I ) or P(·|·, C) or P(·|·,M) or . . .

The context can be a notational nuisance! “Skilling conditional”:

P(Hi |Dobs) = P(Hi )
P(Dobs|Hi )

P(Dobs)
|| C
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Essential contextual information
We can only be uncertain about A if there are alternatives; what
they are will bear on our uncertainty. We must explicitly specify
relevant alternatives.

Hypothesis space: The set of alternative hypotheses of interest
(and auxiliary hypotheses needed to predict the data)

Data/sample space: The set of possible data we may have
predicted before learning of the observed data

Predictive model: Information specifying the likelihood function
(e.g., the conditional predictive dist’n/sampling dist’n)

Other prior information: Any further information available or
necessary to assume to make the problem well posed

Bayesian literature often uses model to refer to all of the
contextual information used to study a particular dataset and
predictive model
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Directly assigned sampling distributions
Some examples of reasoning leading to sampling distributions:

• Binomial distribution:
I Ansatz: Probability for a Bernoulli trial, α

I LTP ⇒ binomial for n successes in N trials

• Poisson distribution:
I Ansatz: P(event in dt|λ) ∝ λdt;

probabilities for events in disjoint intervals independent

I Product & sum rules ⇒ Poisson for n in T

• Gaussian distribution:
I CLT: Probability theory for sum of many quantities with

independent, finite-variance PDFs

I Sufficiency (Gauss): Seek distribution with sample mean as
sufficient statistic (also sample variance)

I Asymptotic limits: large n Binomial, Poisson

I Others: Herschel’s invariance argument (2-D), maximum
entropy. . . 65 / 75



Assigning priors
Sources of prior information

• Analysis of previous experimental/observational data
(but begs the question of what prior to use for the first
such analysis)

• Subjective priors: Elicit a prior from an expert in the
problem domain, e.g., via ranges, moments, quantiles,
histograms

• Population priors: When it’s meaningful to pool
observations, we potentially can learn a shared
prior—multilevel modeling does this

“Non-informative” priors

• Seek a prior that in some sense (TBD!) expresses a lack
of information prior to considering the data

• No universal solution—this notion must be
problem-specific, e.g., exploiting symmetries
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Priors derived from the likelihood function
Few common problems beyond location/scale problems admit a
transformation group argument → we need a more general
approach to formal assignment of priors that express “ignorance”
in some sense

There is no universal consensus on how to do this (yet? ever?)

A common underlying idea: The same C appears in the prior,
p(θ|C), and the likelihood, p(D|θ, C)—the prior “knows” about the
likelihood function, although it doesn’t know what data values will
be plugged into it

Jeffreys priors: Uses Fisher information to define a
(parameter-dependent) scale defining a prior; parameterization
invariant, but strange behavior in many dimensions

Reference priors: Uses information theory to define a prior that
(asymptotically) has the least effect on the posterior; complicated
algorithm; gives good frequentist behavior to Bayesian inferences
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Jeffreys priors

Heuristic motivation:

• Dimensionally, π(θ) ∝ 1/(θ scale)

• If we have data D, a natural inverse scale at θ, from the
likelihood function, is the square root of the observed Fisher
information (recall Laplace approximation):

ID(θ) ≡ −d2 logLD(θ)

dθ2

• For a prior, we don’t know D; for each θ, average over D
predicted by the sampling distribution; this defines the
(expected) Fisher information:

I (θ) ≡ −ED

[
d2 logLD(θ)

dθ2

∣∣∣∣ θ]
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Jeffreys’ prior:
π(θ) ∝ [I (θ)]1/2

• Note the proportionality—the prior scale depends on how
much the likelihood function scale changes vs. θ

• Puts more weight in regions of parameter space where the
data are expected to be more informative

• Parameterization invariant, due to use of derivatives and
vanishing expectation of the score function

SD(θ) =
d logLD(θ)

dθ

• Typically improper when parameter space is non-compact

• Improves frequentist performance of posterior intervals w.r.t.
intervals based on flat priors

• Only considered sound for a single parameter (or considering a
single parameter at a time in some multiparameter problems)
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Jeffreys prior for normal mean
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Jeffreys prior for binomial probability
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Information Gain as Entropy Change

Entropy and uncertainty

Shannon entropy = a scalar measure of the degree of
uncertainty expressed by a probability distribution

S =
∑
i

pi log
1

pi
“Average surprisal”

= −
∑
i

pi log pi

Information gain

Information gain upon learning D = decrease in uncertainty:

I(D) = S[{p(Hi )}]− S[{p(Hi |D)}]
=

∑
i

p(Hi |D) log p(Hi |D)−
∑
i

p(Hi ) log p(Hi )
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A ‘Bit’ About Entropy

Entropy of a Gaussian

p(x) ∝ e−(x−µ)2/2σ2 → I ∝ − log(σ)

p(~x) ∝ exp
[
−1

2~x · V−1 · ~x
]
→ I ∝ − log(det V)

→ Asymptotically like log Fisher matrix

A log-measure of “volume” or “spread,” not range

x

p(x)

x

p(x)

These distributions have the same entropy/amount of information.
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Expected information gain

When the data are yet to be considered, the expected
information gain averages over D; straightforward use of the
product rule/Bayes’s theorem gives:

EI =

∫
dD p(D) I(D)

=

∫
dD p(D)

∑
i

p(Hi |D) log

[
p(Hi |D)

p(Hi )

]
For a continuous hypothesis space labeled by parameter(s) θ,

EI =

∫
dD p(D)

∫
dθp(θ|D) log

[
p(θ|D)

p(θ)

]
This is the expectation value of the Kullback-Leibler
divergence between the prior and posterior:

D ≡
∫

dθp(θ|D) log

[
p(θ|D)

p(θ)

]
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Reference priors

Bernardo (later joined by Berger & Sun) advocates reference
priors, priors chosen to maximize the KLD between prior and
posterior, as an “objective” expression of the idea of a
“non-informative” prior: reference priors let the data most strongly
dominate the prior (on average)

• Rigorous definition invokes asymptotics and delicate handling of
non-compact parameter spaces to make sure posteriors are proper
• For 1-D problems, the reference prior is the Jeffreys prior
• In higher dimensions, the reference prior is not the Jeffreys prior; it

behaves better
• The construction in higher dimensions is complicated and depends

on separating interesting vs. nuisance parameters (but see Berger,
Bernardo & Sun 2015, “Overall objective priors”)
• Reference priors are typically improper on non-compact spaces
• They give Bayesian inferences good frequentist properties
• A constructive numerical algorithm exists
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