Just call it a “\(p\)-value”!

(not a hypothesis probability,
not a false alarm probability)

Tom Loredo
Dept. of Astronomy, Cornell University
http://www.astro.cornell.edu/staff/loredo/

CASt Summer School — 5 June 2014
Significance Testing and p-values

Neyman-Pearson testing

- Specify simple null hypothesis H_0 such that rejecting it implies an interesting effect is present
- Devise statistic $S(D)$ measuring departure from null
- Divide sample space into probable and improbable parts (for H_0); $p($improbable$|H_0) = \alpha$ (Type I error rate), with α specified a priori
- If $S(D_{obs})$ lies in improbable region, reject H_0; otherwise accept it
- Report: “H_0 was rejected (or not) with a procedure with false-alarm frequency α”
Neyman and Pearson devised this approach guided by Neyman’s *frequentist principle*:

In repeated practical use of a statistical procedure, the long-run average actual error should not be greater than (and ideally should equal) the long-run average reported error. (Berger 2003)

A *confidence region* is an example of a familiar procedure satisfying the frequentist principle.

They insisted that one also specify an alternative, and find the error rate for falsely rejecting it (Type II error).
Fisher’s p-value testing

Fisher (and others) felt reporting a rejection frequency of α no matter where $S(D_{\text{obs}})$ lies in the rejection region does not accurately communicate the strength of evidence against H_0. He advocated reporting the *p-value*:

$$p = P(S(D) > S(D_{\text{obs}}) | H_0)$$

Smaller p-values indicate stronger evidence against H_0. Astronomers call this the *significance level or (sometimes) false-alarm probability*. Statisticians don’t—for good reason!
p-value complications

Fisherian testing does not have the straightforward frequentist properties of NP testing, but everyone uses it anyway.

E.g., rejections of H_0 with p-value = 0.05 are *not* “wrong 5% of the time under the null” or “with 5% false-alarm probability.” They are wrong *100% of the time* under the null. To quantify the conditional error rate (i.e., the error rate among datasets with the same p-value), you *must* say something about the alternative.

Even NP tests have unpleasant frequentist properties; e.g., the strength of the evidence against the null (e.g., quantified by a conditional false alarm rate) for a fixed-α test grows weaker as N increases. NP themselves advocated decreasing α with N, but there are no general rules for this.
False alarm rates

Berger (2003) discusses the relationship between p-values, false alarm rates, and Bayesian posterior probabilities (or odds and Bayes factors).

In simple settings where one can easily bound false alarm rates, he shows the p-value significantly underestimates the false alarm rate among datasets sharing a given p-value.

This gives insight into why we’ve come to consider apparently small p-values—like “2σ” ($p \approx 0.05$) or “3σ” ($p \approx 0.003$)—to represent only weak evidence against the null. Typically, datasets with such p-values are not much more probable under alternatives than under the null.

He also shows that a “conditional frequentist” calculation of the false alarm rate in some settings amounts to computation of a Bayes factor.
Entries to the literature

- “402 Citations Questioning the Indiscriminate Use of Null Hypothesis Significance Tests in Observational Studies” (Thompson 2001) [web site]

- “Odds Are, It’s Wrong: Science fails to face the shortcomings of statistics” (By Tom Siegfried 2010) [*Science News*, March 2010]
Example based on Berger (2003)

Model: \(x_i = \mu + \epsilon_i, \ (i = 1 \text{ to } n) \quad \epsilon_i \sim N(0, \sigma^2) \)

Null hypothesis, \(H_0: \mu = \mu_0 = 0 \)

Test statistic:

\[
t(x) = \frac{|\bar{x}|}{\sigma/\sqrt{n}}
\]

\(p \)-value:

\[
p(t|H_0) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}
\]

\(p \)-value = \(P(t \geq t_{\text{obs}}) \)
<table>
<thead>
<tr>
<th>t</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.317</td>
</tr>
<tr>
<td>2</td>
<td>0.046</td>
</tr>
<tr>
<td>3</td>
<td>0.003</td>
</tr>
</tbody>
</table>

$p = .05 \rightarrow \text{“significant”}$

$p = .01 \rightarrow \text{“highly significant”}$
Collect the p-values from a large number of tests in situations where the truth eventually became known, and determine how often H_0 is true at various p-value levels.

- Suppose that, overall, H_0 was true about half of the time.
- Focus on the subset with $t \approx 2$ (say, [1.95, 2.05] so $p \in [.04, .05]$, so that H_0 was rejected at the 0.05 level.
- Find out how many times in that subset H_0 turned out to be true.
- Do the same for other significance levels.
A Monte Carlo experiment

- Choose \(\mu = 0 \) OR \(\mu \sim N(0, 4\sigma^2) \) with a fair coin flip*
- Simulate \(n = 20 \) data, \(x_i \sim N(\mu, \sigma^2) \)
- Calculate \(t_{\text{obs}} = \frac{|\bar{x}|}{\sigma/\sqrt{n}} \) and \(p(t_{\text{obs}}) = P(t > t_{\text{obs}}|\mu = 0) \)
- Bin \(p(t) \) separately for each hypothesis; repeat

Compare how often the two hypotheses produce data with a 2– or 3–\(\sigma \) effect.

* A neutral assumption that gives alternatives a “fair” chance and may overestimate the evidence against \(H_0 \) in real settings
Significance Level Frequencies, $n = 20$
Significance Level Frequencies, \(n = 200 \)

![Graph showing significance level frequencies with bars for 1\(\sigma\), 2\(\sigma\), and 3\(\sigma\) levels.](image-url)
Significance Level Frequencies, $n = 2000$
What about another \(\mu \) prior?

- For data sets with \(H_0 \) rejected at \(p \approx 0.05 \), \(H_0 \) will be true at least 23% of the time (and typically close to 50%). (Edwards et al. 1963; Berger and Selke 1987)
- At \(p \approx 0.01 \), \(H_0 \) will be true at least 7% of the time (and typically close to 15%).

What about a different “true” null frequency?

- If the null is initially true 90% of the time (as has been estimated in some disciplines), for data producing \(p \approx 0.05 \), the null is true at least 72% of the time, and typically over 90%.

In addition . . .

- At a fixed \(p \), the proportion of the time \(H_0 \) is falsely rejected grows as \(\sqrt{n} \). (Jeffreys 1939; Lindley 1957)
- Similar results hold generically; e.g., for \(\chi^2 \). (Delampady & Berger 1990)
A *p*-value is not an easily interpretable measure of the weight of evidence against the null.

- It does not measure how often the null will be wrongly rejected among similar data sets
- A naive false alarm interpretation typically overestimates the evidence
- For fixed *p*-value, the weight of the evidence decreases with increasing sample size
Bayesian view of false-alarm rate

\[B \equiv \frac{p(\{x_i\} | H_1)}{p(\{x_i\} | H_0)} = \frac{p(p_{\text{obs}} | H_1)}{p(p_{\text{obs}} | H_0)} \]

→ \(B \) here is just the ratio calculated in the Monte Carlo!

Why is \(p \)-value a poor measure of the weight of evidence?

- We should be \textit{comparing hypotheses}, not trying to identify rare/surprising events—an observation surprising under the null motivates rejection only if it is not surprising under reasonable alternatives.

- Comparison should use the \textit{actual data}, not merely membership of the data in some larger set. A \(p \)-value conditions on incomplete information.
Harold Jeffreys, addressing an audience of statisticians:

For n from about 10 to 500 the usual result is that $K = 1$ when $(a - \alpha_0)/s_\alpha$ is about 2... not far from the rough rule long known to astronomers, i.e. that differences up to twice the standard error usually disappear when more or better observations become available... I have always considered the arguments for the use of P absurd. They amount to saying that a hypothesis that may or may not be true is rejected because a greater departure from the [observed] trial was improbable; that is, that it has not predicted something that has not happened. As an argument astronomer’s experience is far better. (Jeffreys 1980)