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Classical Regression Model
• Collect n data points, denote ith pair as (ηi, ξi),

where η is the dependent variable (or
‘response’), and ξ is the independent variable
(or ‘predictor’, ‘covariate’)

• Assume usual additive error model:
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• Ordinary Least Squares (OLS) slope
estimate is

• Wait, that’s not in Bevington…
• The ‘error’ term, ε, encompasses real

physical variations in source properties,
i.e., the intrinsic scatter.
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Example: Photoionization Physics in
Broad Line AGN

• Test if distance between BLR and continuum
source set be photoionization physics

• From definition of ionization parameter, U:
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Bentz et al., 2006, ApJ, 644, 133

BLR Size vs Luminosity, 
uncorrected for host galaxy 
starlight (top) and corrected 
for starlight (bottom). Some
scatter due to measurement
errors, but some due to 
intrinsic variations.



Measurement Errors
• Don’t observe (η,ξ), but measured

values (y,x) instead.
• Measurement errors add an additional

level to the statistical model:
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Different Types of Measurement
Error

• Produced by measuring instrument
– CCD Read Noise, Dark Current

• Poisson, Counting Errors
– Uncertainty in photon count rate creates measurement error on

flux.

• Quantities inferred from fitting a parametric model
– Using a spectral model to ‘measure’ flux density

• Using observable as proxies for unobservables
– Using stellar velocity dispersion to ‘measure’ black hole mass,

using galaxy flux to ‘measure’ star formation rate
– Measurement error set by intrinsic source variations, won’t

decrease with better instruments/bigger telescopes



Measurement errors alter the moments of the
joint distribution of the response and covariate,
bias the correlation coefficient and slope
estimate

• If measurement errors are uncorrelated,
regression slope unaffected by measurement
error in the response

• If errors uncorrelated, regression slope and
correlation biased toward zero (attenuated).
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Degree of Bias Depends on
Magnitude of Measurement Error

• Define ratios of
measurement error
variance to observed
variance:

• Bias can then be
expressed as:
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True Distribution Measured Distribution



BCES Estimator
• BCES Approach (Akritas & Bershady, ApJ, 1996,

470, 706; see also Fuller 1987, Measurement Error
Models) is to ‘debias’ the moments:

• Also give estimator for bisector and orthogonal
regression slopes

• Asymptotically normal, variance in coefficients can be
estimated from the data

• Variance of measurement error can depend on
measured value

! 

ˆ " BCES =
Cov(x, y) #$ xy

Var(x) #$ x
2

, ˆ % BCES = y # ˆ " BCES x 



 Advantages   vs  Disadvantages
• Asymptotically unbiased

and normal, variance in
coefficients can be
estimated from the data

• Variance of
measurement error can
depend on measured
value

• Easy and fast to
compute

• Can be unstable, highly
variable for small
samples and/or large
measurement errors

• Can be biased for small
samples and/or large
measurement errors

• Convergence to
asymptotic limit may be
slow, depends on size
of measurement errors



FITEXY Estimator
• Press et al.(1992, Numerical Recipes) define

an ‘effective χ2’ statistic:

• Choose values of α and β that minimize χ2
EXY

• Modified by Tremaine et al.(2002, ApJ, 574,
740), to account for intrinsic scatter:! 
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Advantages    vs  Disadvantages
• Simulations suggest

that FITEXY is less
variable than BCES
under certain conditions

• Fairly easy to calculate
for a given value of σ2

• Can’t be minimized
simultaneously with
respect to α,β, and σ2, ad
hoc procedure often used

• Statistical properties
poorly understood

•  Simulations suggest
FITEXY can be biased,
more variable than BCES

• Not really a ‘true’ χ2, can’t
use Δχ2=1 to find
confidence regions

• Only constructed for
uncorrelated
measurement errors



Structural Approach
• Regard ξ and η as missing data, random

variables with some assumed probability
distribution

• Derive a complete data likelihood:

• Integrate over the missing data, ξ and η, to
obtain the observed (measured) data
likelihood function! 
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Mixture of Normals Model
• Model the distribution of ξ as a mixture of K

Gaussians, assume Gaussian intrinsic scatter
and Gaussian measurement errors of known
variance

• The model is hierarchically expressed as:
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References: Kelly (2007, ApJ in press, arXiv:705.2774),
      Carroll et al.(1999, Biometrics, 55, 44)



Integrate complete data likelihood to
obtain observed data likelihood:
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Can be used to calculate a maximum-likelihood
estimate (MLE), perform Bayesian inference. See Kelly
(2007) for generalization to multiple covariates.



What if we assume that ξ has a
uniform distribution?

• The likelihood for uniform p(ξ) can be
obtained in the limit τ     ∞:

• Argument of exponential is χ2
EXY statistic!

• But minimizing χ2
EXY is not the same as

maximizing the likelihood…
• For homoskedastic measurement errors,

maximizing this likelihood leads to the
ordinary least-squares estimate, so still
biased.
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Advantages   vs Disadvantages
• Simulations suggest MLE for

normal mixture approximately
unbiased, even for small
samples and large
measurement error

• Lower variance than BCES and
FITEXY

• MLE for σ2 rarely, if ever, equal
to zero

• Bayesian inference can be
performed, valid for any sample
size

• Can be extended to handle
non-detections, truncation,
multiple covariates

• Simultaneously estimates
distribution of covariates, may
be useful for some studies

• Computationally intensive,
more complicated than
BCES and FITEXY

• Assumes measurement error
variance known, does not
depend on measurement

• Needs a parametric form for
the intrinsic distribution of
covariates (but mixture
model flexible and fairly
robust).



Simulation Study: Slope

Dashed lines mark the median value of the estimator, solid lines
mark the true value of the slope. Each simulated data set had 50
data points, and y-measurement errors of σy ~ σ.



Simulation Study: Intrinsic Dispersion

Dashed lines mark the median value of the estimator, solid lines
mark the true value of σ. Each simulated data set had 50 data
points, and y-measurement errors of σy ~ σ.



Effects of Sample Selection
• Suppose we select a sample of n sources,

out of a total of N possible sources
• Introduce indicator variable, I, denoting

whether a source is included. Ii = 1 if the ith
source is included, otherwise Ii = 0.

• Selection function for ith source is p(Ii=1|yi,xi)
• Selection function gives the probability that

the ith source is included in the sample, given
the values of xi and yi.

See Little & Rubin (2002, Statistical Analysis with Missing Data) or
Gelman et al.(2004, Bayesian Data Analysis) for further reading.



• Complete data likelihood is

• Here, Aobs denotes the set of n included sources, and
Amis denotes the set of N-n sources not included

• Binomial coefficient gives number of possible ways to
select a subset of n sources from a sample of N
sources

• Integrating over the missing data, the observed data
likelihood now becomes
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Selection only dependent on
covariates

• If the sample selection only depends on the
covariates, then p(I|x,y) = p(I|x).

• Observed data likelihood is then

• Therefore, if selection is only on the
covariates, then inference on the regression
parameters is unaffected by selection effects.! 
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Selection depends on dependent
variable: truncation

• Take Bayesian approach, posterior is

• Assume uniform prior on logN, p(θ,ψ,N)
∝N-1p(θ,ψ)

• Since we don’t care about N, sum
posterior over n < N < 
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Covariate Selection vs
Response Selection

Covariate Selection: No
effect on distribution of y at a
given x

Response Selection:
Changes distribution of y at a
given x



Non-detections: ‘Censored’ Data
• Introduce additional indicator variable, D, denoting

whether a data point is detected or not: D=1 if
detected.

• Assuming selection function independent of
response, observed data likelihood becomes

• Adet denotes set of detected sources, Acens denotes
set of censored sources.

• Equations for p(x|ψ) and p(y|x,θ,ψ) under the mixture
of normals models are given in Kelly (2007).
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Bayesian Inference
• Calculate posterior probability density

for mixture of normals structural model
• Posterior valid for any sample size,

doesn’t rely on large sample
approximations (e.g., asymptotic
distribution of MLE).

• Assume prior advocated by Carroll et
al.(1999)

• Use markov chain monte carlo (MCMC)
to obtain draws from posterior



Gibbs Sampler
• Method for obtaining draws from posterior, easy

to program
• Start with initial guesses for all unknowns
• Proceed in three steps:

– Simulate new values of missing data, including non-
detections, given the observed data and current values of
the parameters

– Simulate new values of the parameters, given the current
values of the prior parameters and the missing data

– Simulate new values of the prior parameters, given the
current parameter values.

• Save random draws at each iterations, repeat
until convergence.

• Treat values from latter part of Gibbs sampler as
random draw form the posterior
Details given in Kelly (2007). Computer routines available at IDL Astronomy 
User’s Library, http://idlastro.gsfc.nasa.gov/homepage.html



Example: Simulated Data Set
with Non-detections

Filled Squares: Detected data 
            points

Hollow Squares: Undetected
 data points

Solid line is true regression line,
Dashed-dotted is posterior 
Median, shaded region contains
Approximately 95% of posterior
probability



Posterior from MCMC for simulated
data with non-detections

Solid vertical line marks
true value. For 
comparison, a naïve 
MLE that ignores meas.
error found

This is biased toward 
zero at a level of 3.5σ
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Example: Dependence of Quasar X-ray
Spectral Slope on Eddington Ratio

Solid line is posterior median,
Shaded region contains 95%
Of posterior probability.



Posterior for Quasar Spectral Slope
vs Eddington Ratio

For Comparison:
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