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Clustering: Intuition

A basic tool in data mining/pattern recognition:
Divide a set of data into groups.
Samples in one cluster are close and clusters are far apart.
Motivation:

Discover classes of data in an unsupervised way
(unsupervised learning).
Efficient representation of data: fast retrieval, data
complexity reduction.
Various engineering purposes: tightly linked with pattern
recognition.



Astronomical Application of Clustering

Multivariate clustering of gamma ray bursts (GRBs)
GRBs are extremely rapid (1-100s), powerful (L 1051 erg),
explosive events occurring at random times in normal
galaxies. The GRB itself is followed by an afterglow seen
at longer wavelengths (X-ray to radio) for days/months.
They probably arise from a subclass of supernova
explosions, colliding binary neutron stars, or similar event
which produces a collimated relativistic fireball. Due to
Doppler beaming, we probably see only a small fraction of
all GRBs.
Problem: Based on the properties of the GRB (e.g.,
location in the sky, arrival time, duration, fluence, and
spectral hardness), can we find subtypes/multiple classes
of events



Approaches to Clustering

Represent samples by feature vectors.
Define a distance measure to assess the closeness
between data.
“Closeness” can be measured in many ways.
Define distance based on various norms/metrics.
For stars with measured parallax, the multivariate
“distance” between stars is the spatial Euclidean distance.
For a galaxy redshift survey, however, the multivariate
“distance” depends on the Hubble constant which scales
velocity to spatial distance. For many astronomical
datasets, the variables have incompatible units and no
prior known relationship. The result of clustering will
depends on the arbitrary choice of variable scaling.
Clustering: grouping of similar objects (unsupervised
learning)



Clustering versus Classification (cont’d.)

Approaches
1 Prototype methods: K-means (for vectors), K-center (for

vectors), D2-clustering (for bags of weighted vectors)
2 Statistical modeling: mixture modeling by the EM algorithm,

Modal clustering
3 Pairwise distance based partition: Spectral graph

partitioning, Dendrogram clustering (agglomerative): single
linkage (friends of friends algorithm), complete linkage, etc.



Clustering versus Classification

Recall goal of clustering: find subtypes or groups that are
not defined a priori based on measurements.

By contrast, if there are a priori group labels and one
wishes to use them in an analysis, then clustering is not
the method to use!!

Instead one uses classification methodologies
In computer science, clustering is termed unsupervised
learning, while classification is termed supervised learning.



Philosophies of Clustering

Parametric versus nonparametric

Probabilistic versus algorithmic

Pros and cons of each approach

With any method, must realize that a notion of distance is
used.



K-means

Assume there are M prototypes (observations) denoted by

Z = {z1, z2, ..., zM} .
Each training sample is assigned to one of the prototype.
Denote the assignment function by A(·). Then A(xi) = j
means the i th training sample is assigned to the j th
prototype.
Goal: minimize the total mean squared error between the
training samples and their representative prototypes, that
is, the trace of the pooled within cluster covariance matrix.

arg min
Z,A

N∑
i=1

‖ xi − zA(xi ) ‖
2

Denote the objective function by

L(Z,A) =
N∑

i=1

‖ xi − zA(xi ) ‖
2 .

Intuition: training samples are tightly clustered around the
prototypes. Hence, the prototypes serve as a compact
representation for the training data.



Necessary Conditions

If Z is fixed, the optimal assignment function A(·) should
follow the nearest neighbor rule, that is,

A(xi) = arg minj∈{1,2,...,M} ‖ xi − zj ‖ .

If A(·) is fixed, the prototype zj should be the average
(centroid) of all the samples assigned to the j th prototype:

zj =

∑
i:A(xi )=j xi

Nj
,

where Nj is the number of samples assigned to prototype j .



The Algorithm

Based on the necessary conditions, the k-means algorithm
alternates between the two steps:

For a fixed set of centroids (prototypes), optimize A(·) by
assigning each sample to its closest centroid using
Euclidean distance.
Update the centroids by computing the average of all the
samples assigned to it.

The algorithm converges since after each iteration, the
objective function decreases (non-increasing).
Usually converges fast.
Stopping criterion: the ratio between the decrease and the
objective function is below a threshold.



Example

Training set: {1.2,5.6,3.7,0.6,0.1,2.6}.
Apply k-means algorithm with 2 centroids, {z1, z2}.
Initialization: randomly pick z1 = 2, z2 = 5.

fixed update
2 {1.2, 0.6, 0.1, 2.6}
5 {5.6, 3.7}

{1.2, 0.6, 0.1, 2.6} 1.125
{5.6, 3.7} 4.65

1.125 {1.2, 0.6, 0.1, 2.6}
4.65 {5.6, 3.7}

The two prototypes are: z1 = 1.125, z2 = 4.65. The
objective function is L(Z,A) = 5.3125.



Example (cont’d.)

Initialization: randomly pick z1 = 0.8, z2 = 3.8.

fixed update
0.8 {1.2, 0.6, 0.1}
3.8 {5.6, 3.7, 2.6}

{1.2, 0.6, 0.1 } 0.633
{5.6, 3.7, 2.6 } 3.967

0.633 {1.2, 0.6, 0.1}
3.967 {5.6, 3.7, 2.6}

The two prototypes are: z1 = 0.633, z2 = 3.967. The
objective function is L(Z,A) = 5.2133.
Starting from different initial values, the k-means algorithm
converges to different local optimum.
It can be shown that {z1 = 0.633, z2 = 3.967} is the global
optimal solution.



Initialization

Randomly pick up the prototypes to start the k-means
iteration.
Different initial prototypes may lead to different local
optimal solutions given by k-means.
Try different sets of initial prototypes, compare the
objective function at the end to choose the best solution.
When randomly select initial prototypes, better make sure
no prototype is out of the range of the entire data set.
Initialization in the above simulation:

Generated M random vectors with independent
dimensions. For each dimension, the feature is uniformly
distributed in [−1,1].
Linearly transform the j th feature, Zj , j = 1,2, ...,p in each
prototype (a vector) by: Zjsj + mj , where sj is the sample
standard deviation of dimension j and mj is the sample
mean of dimension j , both computed using the training
data.



K-center Clustering

Let A be a set of n objects.
Partition A into K sets C1, C2, ..., CK .
Cluster size of Ck : the least value D for which all points in
Ck are:

1 within distance D of each other, or
2 within distance D/2 of some point called the cluster center.

Let the cluster size of Ck be Dk .
The cluster size of partition S is

D = max
k=1,...,K

Dk .

Goal: Given K , minS D(S).



Comparison with k-means

Assume the distance between vectors is the squared
Euclidean distance.
K-means:

min
S

K∑
k=1

∑
i:xi∈Ck

(xi − µk )
T (xi − µk )

where µk is the centroid for cluster Ck . In particular,

µk =
1

Nk

∑
i:xi∈Ck

xi .



Comparison with k-means (cont’d.)

K-center:

min
S

max
k=1,...,K

max
i:xi∈Ck

(xi − µk )
T (xi − µk ) .

where µk is called the “centroid”, but may not be the mean
vector.
Another formulation of k-center:

min
S

max
k=1,...,K

max
i,j:xi ,xj∈Ck

L(xi , xj) .

L(xi , xj) denotes any distance between a pair of objects.
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Figure: Comparison of k-means and k-center. (a): Original
unclustered data. (b): Clustering by k-means. (c): Clustering by
k-center. K-means focuses on average distance. K-center focuses on
worst scenario.



Agglomerative Clustering

Generate clusters in a hierarchical way.
Let the data set be A = {x1, ..., xn}.
Start with n clusters, each containing one data point.
Merge the two clusters with minimum pairwise distance.
Update between-cluster distance.
Iterate the merging procedure.
The clustering procedure can be visualized by a tree
structure called dendrogram.
Definition for between-cluster distance?

For clusters containing only one data point, the
between-cluster distance is the between-object distance.
For clusters containing multiple data points, the
between-cluster distance is an agglomerative version of the
between-object distances.

Examples: minimum or maximum between-objects distances
for objects in the two clusters.

The agglomerative between-cluster distance can often be
computed recursively.



Example Distances

Suppose cluster r and s are two clusters merged into a
new cluster t . Let k be any other cluster.
Denote between-cluster distance by D(·, ·).
How to get D(t , k) from D(r , k) and D(s, k)?

Single-link clustering:

D(t , k) = min(D(r , k),D(s, k))

D(t , k) is the minimum distance between two objects in
cluster t and k respectively.
Complete-link clustering:

D(t , k) = max(D(r , k),D(s, k))

D(t , k) is the maximum distance between two objects in
cluster t and k respectively.



Example Distances (cont’d.)

Average linkage clustering:
Unweighted case:

D(t , k) =
nr

nr + ns
D(r , k) +

ns

nr + ns
D(s, k)

Weighted case:

D(t , k) =
1
2

D(r , k) +
1
2

D(s, k)

D(t , k) is the average distance between two objects in cluster t
and k respectively.
For the unweighted case, the number of elements in each
cluster is taken into consideration, while in the weighted case
each cluster is weighted equally. So objects in smaller cluster
are weighted more heavily than those in larger clusters.



Example Distances (cont’d.)

Centroid clustering:
Unweighted case:

D(t , k) =
nr

nr + ns
D(r , k) +

ns

nr + ns
D(s, k)

− nr ns

nr + ns
D(r , s)

Weighted case:

D(t , k) =
1
2

D(r , k) +
1
2

D(s, k)− 1
4

D(r , s)

A centroid is computed for each cluster and the distance
between clusters is given by the distance between their
respective centroids.



Example Distances (cont’d.)

Ward’s clustering:

D(t , k) =
nr + nk

nr + ns + nk
D(r , k)

+
ns + nk

nr + ns + nk
D(s, k)

− nk

nr + ns + nk
D(r , s)

Merge the two clusters for which the change in the variance of
the clustering is minimized. The variance of a cluster is defined
as the sum of squared-error between each object in the cluster
and the centroid of the cluster.
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Figure: Agglomerate clustering of a data set (100 points) into 9
clusters. (a): Single-link, (b): Complete-link, (c): Average linkage, (d)
Wards clustering
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(a) Single linkage #clusters=20 (b) Complete linkage #clusters=10
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Average linkage clustering for Hipparcos data
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Wards linkage clustering for Hipparcos data
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(c) Average linkage #clusters=10 (d) Ward’s linkage #clusters=10

Figure: Clustering of the Hipparcos data
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Complete linkage clustering for Hipparcos data
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(a) Single linkage #clusters=4 (b) Complete linkage #clusters=4
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Wards linkage clustering for Hipparcos data
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(c) Average linkage #clusters=4 (d) Ward’s linkage #clusters=4

Figure: Clustering of the Hipparcos data
























