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Approximate Bayesian Computation

“Likelihood-free” approach to approximating p(θ | xobs)
(p(xobs | θ) not specified)

Proceeds via simulation of the forward process

The posterior for θ given observed data xobs:

p(θ | xobs) =
p(xobs | θ)p(θ)∫
p(xobs | θ)p(θ)dθ

∝ p(xobs | θ)p(θ)

Why would we not know p(xobs | θ)?

1 Physical model too complex

2 Strong dependency in data

3 Observational limitations

Some Astronomy ABC examples: Cameron and Pettitt (2012);
Schafer and Freeman (2012); Weyant et al. (2013); Akeret et al.
(2015); Ishida et al. (2015)
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Basic ABC algorithm

For the observed data xobs and prior p(θ):

Algorithm∗

1 Sample θprop from prior p(θ)

2 Generate xprop from forward process F (x | θprop)

3 Accept θprop if xobs = xprop

4 Return to step 1

∗Introduced in Tavaré et al. (1997) and Pritchard et al. (1999)
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Binomial illustration

Data are a sample of 1’s and 0’s coming from Yi ∼ Bernoulli(p)
where n = sample size, θ = P(Y = 1).

Likelihood is p(y | θ) =
(n
y

)
θy (1− θ)n−y , where y =

∑n
i=1 yi

(but we will pretend we do not know this).

Need to determine a distance function, ρ. Use the following:

ρ(y , x) =
1

n
|y − x |

Hence ρ(y , x) = 0 if the generated dataset x has the same number
of 1’s as y .
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Binomial illustration: R code

n <- 1000 #number of observations

N <- 1000 #generated sample size

true.p <- .75

data <- rbinom(n,1,true.p)

epsilon <- 0

alpha.hyper <- 1

beta.hyper <- 1

p <- numeric(N)

rho <- function(y,x) abs(sum(y)-sum(x))/n

for(i in 1:N){

d <- epsilon+1

while(d>epsilon) {

proposed.p <- rbeta(1,alpha.hyper,beta.hyper)

x <- rbinom(n,1,proposed.p)

d <- rho(data,x)}

p[i] <- proposed.p}

Reference: Turner and Zandt (2012)
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Binomial illustration: posterior
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It turns out that θacc is a draw from the posterior if

P(Accept θprop | θprop = θ) ∝ p(xobs|θ) (the likelihood)

This provides a basis for assessing the quality of the ABC
approximation

To achieve this, we could accept θprop if xprop = xobs (i.e. accept
θprop that reproduce the xobs exactly)

−→ Of course, this is not practical (way too slow!)

Instead, accept θprop if xprop is“close to” xobs using some chosen
distance metric ∆.
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Tolerance: ε

Define:

φε(xprop, xobs) =

{
1, if ∆(xprop, xobs) < ε
0, if ∆(xprop, xobs) ≥ ε

In other words, φε(xprop, xobs) is an indicator as to whether or not
xprop is close to xobs.

Hence,

P(Accept θprop | θprop = θ) = P(∆(xprop, xobs) < ε | θprop = θ)

=

∫
φε(x , xobs)p(x | θ) dx

−→ Kp(xobs | θ) as ε→ 0

Hence, for ε small,

P(Accept θprop | θprop = θ) ≈ Kp(xobs | θ)
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Toy Example: Assume we have a single observation, xobs, from a
Gaussian with mean θ and variance one.

−2 −1 0 1 2 3 4

x

−2 −1 0 1 2 3 4

x

Depicts the convolution∫
φε(x , xobs)f (x | θ) dx = P(Accept θprop | θprop = θ)

for case where xobs = 1, θ = 0 (left) / θ = 1 (right), ε = 0.1.
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ε = 0.1
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Likelihood

Acceptance Prob.

ε = 0.4

−2 −1 0 1 2 3 4

x

−2 −1 0 1 2 3 4

θ

Likelihood

Acceptance Prob.

ε = 1
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θ
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Note: Acceptance probability curve has been normalized so the area under the curve is 1.
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Summary statistics

Comparing xprop with xobs is not generally computationally feasible

For example, when x is high-dimensional, ε will need to be too
large in order to keep the acceptance probability reasonable.

Instead, compare (lower dimensional) summaries, S(xprop) and
S(xobs).
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For observations xobs, distance function ρ, and (small) tolerance ε

Algorithm 1 Basic ABC Algorithm

1: for i = 1 to N do
2: while ρ (S(xobs), S(xprop)) > ε do
3: Propose θprop by drawing θprop from prior p(θ)
4: Generate xprop from forward process F (x | θprop)
5: Calculate summary statistics {S(xobs),S(xprop)}
6: end while
7: θ(i) ← θprop

8: end for

ABC posterior based on {θ(1), θ(2), . . . , θ(N)} = {θ(i)}Ni=1

{θ(i)}Ni=1 are often referred to as particles
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ABC in a nutshell

“The basic idea behind ABC is that using a representative
(enough) summary statistic η coupled with a small (enough)

tolerance ε should produce a good (enough) approximation to the
posterior...”

Marin et al. (2012)
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Gaussian illustration

Data xobs consists of 25 iid draws from Normal(µ, 1)

Summary statistics S(x) = x̄

Distance function ∆(S(xprop), S(xobs)) = |x̄prop − x̄obs|

Tolerance ε = 1 and 0.08

Prior π(µ) = Normal(0,10)
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Gaussian illustration: posteriors for µ

−→ Different tolerances (ε = 1 vs ε = 0.08)
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Gaussian illustration: posteriors for µ

−→ Different summary statistics (sample mean vs sample median)
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Summary of basic ABC

Decisions that need to be made:
1 Select distance function (ρ) and summary statistic(s)
2 Tolerance (ε)

Finding the “right” ε can be inefficient
−→ we end up throwing away many of the theories proposed from
the selected priors

How can we improve this algorithm?
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Sequential ABC

Main idea

Instead of starting the ABC algorithm over with a smaller tolerance
(ε), use the already sampled particle system as a proposal
distribution rather than drawing from the prior distribution.

Particle system:

(1) retained sampled values, (2) importance weights

Some references:

Beaumont et al. (2009); Moral et al. (2011); Bonassi and West (2004)
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Algorithm 2 ABC - Population Monte Carlo algorithm
1: At iteration t = 1
2: Basic ABC sampler to obtain {θ(i)

1 }
N
i=1

3: Set importance weights W
(i)
1 = 1/N for i = 1, . . . ,N

4: for t = 2 to T do
5: Set τ 2

t = 2 · var
(
{θ(i)

t−1,W
(i)
t−1}

N
i=1

)
6: for i = 1 to N do
7: while ρ (S(xobs), S(xprop)) > εt do

8: Draw θ0 from {θ(i)
t−1}

N
i=1 with probabilities {W (i)

t−1}
N
i=1

9: Propose θprop ∼ N(θ0, τt)
10: Generate xprop from F (x | θprop)
11: Calculate summary statistics {S(xobs),S(xprop)}
12: end while
13: θ

(i)
t ← θprop

14: W̃
(i)
t ←

π
(
θ

(i)
t

)
∑N

j=1 W
(j)
t−1φ

[
τ−1
t (θ

(i)
t −θ

(j)
t−1)

]
15: end for
16: {W (i)

t }Ni=1 ← {W̃
(i)
t }Ni=1/

∑N
i=1 W̃

(i)
t

17: end for

Decreasing tolerances ε1 ≥ · · · ≥ εT , φ(·) is the density function of a N(0, 1)

From Beaumont et al. (2009) 19



Gaussian illustration: sequential posteriors
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Sequential setting: decisions

1 Determining the sequence of tolerances, ε1:t

One possibility: use a quantile (e.g. 50th percentile) of the
distribution of accepted distances from the previous time step

2 Moving the particles between time steps

Need to ensure any constraints on the parameter space are
satisfied

3 Calculating the particle weights

Relies on ideas from Importance Sampling
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There are other variations of ABC that may prove useful in your
setting (Marin et al., 2012)

Beaumont et al. (2002) introduces a post-processing adjustment
(using local regression) to the simulation output in order to use
more of the simulated draws (with extensions in Blum and François
(2010))

22



Concluding remarks

1 Approximate Bayesian Computation could be a useful tool in astronomy,
but it must be handled with care

2 There are three main decisions that need to be made in the standard
ABC algorithm: summary statistic, distance function, and tolerance

3 Considering a sequence of tolerances can lead to more efficient sampling,
but results in more decisions: how to decrease the tolerance, when to
stop the sampling, how to “move” or “mix” the particles between
sampling steps

Additional resources

Csilléry et al. (2010): Approximate Bayesian Computation (ABC) in practice

Csillery et al. (2012): abc: an R package for approximate Bayesian
computation (ABC)

Jabot et al. (2013): EasyABC: performing efficient approximate Bayesian
computation sampling schemes (R package)

23



Akeret, J., Refregier, A., Amara, A., Seehars, S., and Hasner, C. (2015), “Approximate Bayesian computation for
forward modeling in cosmology,” Journal of Cosmology and Astroparticle Physics, 2015, 043.

Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P. (2009), “Adaptive approximate Bayesian
computation,” Biometrika, 96, 983 – 990.

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002), “Approximate Bayesian Computation in Population
Genetics,” Genetics, 162, 2025 – 2035.

Blum, M. G. B. and François, O. (2010), “Non-linear regression models for Approximate Bayesian Computation,”
Statistics and Computing, 20, 63 – 73.

Bonassi, F. V. and West, M. (2004), “Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian
Computation,” Bayesian Analysis, 1, 1–19.

Cameron, E. and Pettitt, A. N. (2012), “Approximate Bayesian Computation for Astronomical Model Analysis: A
Case Study in Galaxy Demographics and Morphological Transformation at High Redshift,” Monthly Notices of
the Royal Astronomical Society, 425, 44–65.
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