Approximate Bayesian Computation

Jessi Cisewski-Kehe Yale University

Pennstate Astroinformatics Summer School June 7, 2018

Some slides were adapted from a presentation by Chad Schafer (CMU)

Approximate Bayesian Computation

- "Likelihood-free" approach to approximating $p(\theta \mid x_{\text{obs}})$ $(p(x_{\text{obs}} \mid \theta) \text{ not specified})$
- Proceeds via simulation of the forward process

The posterior for θ given observed data x_{obs} :

$$p(\theta \mid x_{\text{obs}}) = \frac{p(x_{\text{obs}} \mid \theta)p(\theta)}{\int p(x_{\text{obs}} \mid \theta)p(\theta)d\theta} \propto p(x_{\text{obs}} \mid \theta)p(\theta)$$

Why would we not know $p(x_{obs} | \theta)$?

- Physical model too complex
- Strong dependency in data
- Observational limitations

Some Astronomy ABC examples: Cameron and Pettitt (2012); Schafer and Freeman (2012); Weyant et al. (2013); Akeret et al. (2015); Ishida et al. (2015)

Basic ABC algorithm

For the observed data x_{obs} and prior $p(\theta)$:

Algorithm*

- **1** Sample θ_{prop} from prior $p(\theta)$
- **2** Generate x_{prop} from forward process $F(x \mid \theta_{prop})$
- **3** Accept θ_{prop} if $x_{\text{obs}} = x_{\text{prop}}$
- Return to step 1

^{*}Introduced in Tavaré et al. (1997) and Pritchard et al. (1999)

Binomial illustration

- Data are a sample of 1's and 0's coming from $Y_i \sim \text{Bernoulli}(p)$ where n = sample size, $\theta = P(Y = 1)$.
- Likelihood is $p(y \mid \theta) = \binom{n}{y} \theta^y (1 \theta)^{n-y}$, where $y = \sum_{i=1}^n y_i$ (but we will pretend we do not know this).

Need to determine a distance function, ρ . Use the following:

$$\rho(y,x) = \frac{1}{n}|y-x|$$

Hence $\rho(y,x)=0$ if the generated dataset x has the same number of 1's as y.

Binomial illustration: R code

```
n <- 1000 #number of observations
N <- 1000 #generated sample size
true.p <- .75
data <- rbinom(n,1,true.p)</pre>
epsilon <- 0
alpha.hyper <- 1
beta.hyper <- 1
p <- numeric(N)</pre>
rho <- function(y,x) abs(sum(y)-sum(x))/n
for(i in 1:N){
    d <- epsilon+1
    while(d>epsilon) {
        proposed.p <- rbeta(1,alpha.hyper,beta.hyper)</pre>
        x <- rbinom(n,1,proposed.p)</pre>
        d <- rho(data.x)}</pre>
    p[i] <- proposed.p}</pre>
```

Reference: Turner and Zandt (2012)

Binomial illustration: posterior

It turns out that θ_{acc} is a draw from the posterior if

$$P(\text{Accept } \theta_{\text{prop}} \mid \theta_{\text{prop}} = \theta) \propto p(x_{\text{obs}} \mid \theta)$$
 (the likelihood)

- This provides a basis for assessing the quality of the ABC approximation
- To achieve this, we could accept θ_{prop} if $x_{\text{prop}} = x_{\text{obs}}$ (i.e. accept θ_{prop} that reproduce the x_{obs} exactly)
 - → Of course, this is not practical (way too slow!)
- Instead, accept θ_{prop} if x_{prop} is "close to" x_{obs} using some chosen distance metric Δ .

Tolerance: ϵ

Define:

$$\phi_{\epsilon}(\mathbf{x}_{\text{prop}}, \mathbf{x}_{\text{obs}}) = \left\{ egin{array}{ll} 1, & ext{if } \Delta(\mathbf{x}_{\text{prop}}, \mathbf{x}_{\text{obs}}) < \epsilon \\ 0, & ext{if } \Delta(\mathbf{x}_{\text{prop}}, \mathbf{x}_{\text{obs}}) \geq \epsilon \end{array}
ight.$$

In other words, $\phi_{\epsilon}(x_{\text{prop}}, x_{\text{obs}})$ is an indicator as to whether or not x_{prop} is close to x_{obs} .

Hence,

$$\begin{array}{lll} P(\mathsf{Accept}\;\theta_{\mathsf{prop}}\mid\theta_{\mathsf{prop}}=\theta) & = & P(\Delta(x_{\mathsf{prop}},x_{\mathsf{obs}})<\epsilon\mid\theta_{\mathsf{prop}}=\theta) \\ \\ & = & \int\phi_{\epsilon}(x,x_{\mathsf{obs}})p(x\mid\theta)\;dx \\ \\ & \longrightarrow & \mathcal{K}p(x_{\mathsf{obs}}\mid\theta)\;\;\mathsf{as}\;\epsilon\to0 \end{array}$$

Hence, for ϵ small,

$$P(\text{Accept } \theta_{\text{prop}} \mid \theta_{\text{prop}} = \theta) \approx Kp(x_{\text{obs}} \mid \theta)$$

Toy Example: Assume we have a single observation, x_{obs} , from a Gaussian with mean θ and variance one.

Depicts the convolution

$$\int \phi_{\epsilon}(x, x_{ ext{obs}}) f(x \mid heta) dx = P(ext{Accept } heta_{ ext{prop}} \mid heta_{ ext{prop}} = heta)$$

for case where $x_{\text{obs}}=1$, $\theta=0$ (left) / $\theta=1$ (right), $\epsilon=0.1$.

Note: Acceptance probability curve has been normalized so the area under the curve is 1.

Summary statistics

Comparing χ_{prop} with χ_{obs} is not generally computationally feasible

- For example, when x is high-dimensional, ϵ will need to be too large in order to keep the acceptance probability reasonable.
- Instead, compare (lower dimensional) summaries, $S(x_{prop})$ and $S(x_{obs})$.

For observations $x_{ ext{obs}}$, distance function ho, and (small) tolerance ϵ

Algorithm 1 Basic ABC Algorithm

- 1: **for** i = 1 to *N* **do**
- 2: while $\rho(S(x_{\text{obs}}), S(x_{\text{prop}})) > \epsilon$ do
- 3: Propose θ_{prop} by drawing θ_{prop} from prior $p(\theta)$
- 4: Generate χ_{prop} from forward process $F(x \mid \theta_{\text{prop}})$
- 5: Calculate summary statistics $\{S(x_{obs}), S(x_{prop})\}$
- 6: end while
- 7: $\theta^{(i)} \leftarrow \theta_{\text{prop}}$
- 8: end for
- ABC posterior based on $\{\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)}\} = \{\theta^{(i)}\}_{i=1}^N$
- $\{\theta^{(i)}\}_{i=1}^{N}$ are often referred to as particles

ABC in a nutshell

"The basic idea behind ABC is that using a representative (enough) summary statistic η coupled with a small (enough) tolerance ϵ should produce a good (enough) approximation to the posterior..."

Marin et al. (2012)

Gaussian illustration

- Data $x_{ ext{obs}}$ consists of 25 iid draws from $\mathsf{Normal}(\mu,1)$
- Summary statistics $S(x) = \bar{x}$
- $\bullet \quad \mathsf{Distance \ function} \ \Delta(S(\mathit{x}_{\mathsf{prop}}), S(\mathit{x}_{\mathsf{obs}})) = |\bar{\mathit{x}}_{\mathsf{prop}} \bar{\mathit{x}}_{\mathsf{obs}}|$
- Tolerance $\epsilon = 1$ and 0.08
- Prior $\pi(\mu) = \text{Normal}(0,10)$

Gaussian illustration: posteriors for μ

 \longrightarrow Different tolerances ($\epsilon = 1 \text{ vs } \epsilon = 0.08$)

 \longrightarrow choice of ϵ is important

Gaussian illustration: posteriors for μ

→ Different summary statistics (sample mean vs sample median)

→ choice of summary statistic(s) is(are) important

Summary of basic ABC

- Decisions that need to be made:
 - **1** Select distance function (ρ) and summary statistic(s)
 - 2 Tolerance (ϵ)
- Finding the "right" ϵ can be inefficient
 - \longrightarrow we end up throwing away many of the theories proposed from the selected priors
- How can we improve this algorithm?

Sequential ABC

Main idea

Instead of starting the ABC algorithm over with a smaller tolerance (ϵ) , use the already sampled particle system as a proposal distribution *rather* than drawing from the prior distribution.

Particle system:

(1) retained sampled values, (2) importance weights

Some references:

Beaumont et al. (2009); Moral et al. (2011); Bonassi and West (2004)

Algorithm 2 ABC - Population Monte Carlo algorithm

```
1: At iteration t=1
  2: Basic ABC sampler to obtain \{\theta_1^{(i)}\}_{i=1}^N
 3: Set importance weights W_1^{(i)} = 1/N for i = 1, ..., N
  4: for t = 2 to T do
          Set \tau_t^2 = 2 \cdot \text{var}\left(\{\theta_{t-1}^{(i)}, W_{t-1}^{(i)}\}_{i=1}^N\right)
  6:
             for i = 1 to N do
  7:
                   while \rho(S(x_{\text{obs}}), S(x_{\text{prop}})) > \epsilon_t do
                         Draw \theta_0 from \{\theta_{t-1}^{(i)}\}_{i=1}^N with probabilities \{W_{t-1}^{(i)}\}_{i=1}^N
 8:
 9:
                         Propose \theta_{\text{prop}} \sim N(\theta_0, \tau_t)
                         Generate x_{\text{prop}} from F(x \mid \theta_{\text{prop}})
10:
11:
                         Calculate summary statistics \{S(x_{obs}), S(x_{prop})\}\
12:
                   end while
                  \theta_{\star}^{(i)} \leftarrow \theta_{\text{prop}}
13:
                   \widetilde{W}_t^{(i)} \leftarrow \frac{\pi\left(\theta_t^{(i)}\right)}{\sum_{t=1}^{N} W_{\star}^{(j)}, \phi\left[\tau_{\star}^{-1}\left(\theta_{\star}^{(i)} - \theta_{\star}^{(j)}\right)\right]}
14:
15:
             end for
             \{W_{t}^{(i)}\}_{i=1}^{N} \leftarrow \{\widetilde{W}_{t}^{(i)}\}_{i=1}^{N} / \sum_{i=1}^{N} \widetilde{W}_{t}^{(i)}
16:
17: end for
```

Decreasing tolerances $\epsilon_1 \geq \cdots \geq \epsilon_T$, $\phi(\cdot)$ is the density function of a N(0,1)

From Beaumont et al. (2009)

Gaussian illustration: sequential posteriors

Tolerance sequence, $\epsilon_{1:10}$: 1.00 0.75 0.53 0.38 0.27 0.19 0.15 0.11 0.08 0.06

Sequential setting: decisions

- Determining the sequence of tolerances, $\epsilon_{1:t}$ One possibility: use a quantile (e.g. 50th percentile) of the distribution of accepted distances from the previous time step
- Moving the particles between time steps Need to ensure any constraints on the parameter space are satisfied
- Calculating the particle weights
 Relies on ideas from Importance Sampling

- There are other variations of ABC that may prove useful in your setting (Marin et al., 2012)
- Beaumont et al. (2002) introduces a post-processing adjustment (using local regression) to the simulation output in order to use more of the simulated draws (with extensions in Blum and François (2010))

Concluding remarks

- Approximate Bayesian Computation could be a useful tool in astronomy, but it must be handled with care
- ② There are three main decisions that need to be made in the standard ABC algorithm: summary statistic, distance function, and tolerance
- Ocnsidering a sequence of tolerances can lead to more efficient sampling, but results in more decisions: how to decrease the tolerance, when to stop the sampling, how to "move" or "mix" the particles between sampling steps

Additional resources

- Csilléry et al. (2010): Approximate Bayesian Computation (ABC) in practice
- Csillery et al. (2012): abc: an R package for approximate Bayesian computation (ABC)
- Jabot et al. (2013): EasyABC: performing efficient approximate Bayesian computation sampling schemes (R package)

- Akeret, J., Refregier, A., Amara, A., Seehars, S., and Hasner, C. (2015), "Approximate Bayesian computation for forward modeling in cosmology," *Journal of Cosmology and Astroparticle Physics*, 2015, 043.
- Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P. (2009), "Adaptive approximate Bayesian computation," *Biometrika*, 96, 983 990.
- Beaumont, M. A., Zhang, W., and Balding, D. J. (2002), "Approximate Bayesian Computation in Population Genetics," Genetics, 162, 2025 2035.
- Blum, M. G. B. and François, O. (2010), "Non-linear regression models for Approximate Bayesian Computation," Statistics and Computing, 20, 63 – 73.
- Bonassi, F. V. and West, M. (2004), "Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation." *Bayesian Analysis*. 1, 1–19.
- Cameron, E. and Pettitt, A. N. (2012), "Approximate Bayesian Computation for Astronomical Model Analysis: A Case Study in Galaxy Demographics and Morphological Transformation at High Redshift," Monthly Notices of the Royal Astronomical Society, 425, 44–65.
- Csilléry, K., Blum, M. G., Gaggiotti, O. E., and François, O. (2010), "Approximate Bayesian Computation (ABC) in practice," Trends in ecology & evolution, 25, 410 418.
- Csillery, K., Francois, O., and Blum, M. G. B. (2012), "abc: an R package for approximate Bayesian computation (ABC)," Methods in Ecology and Evolution.
- Ishida, E. E. O., Vitenti, S. D. P., Penna-Lima, M., Cisewski, J., de Souza, R. S., Trindade, A. M. M., Cameron, E., and Busti, V. C. (2015), "cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation," Astronomy and Computing, 13, 1 11.
- Jabot, F., Faure, T., and Dumoullin, N. (2013), EasyABC: performing efficient approximate Bayesian computation.
- Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2012), "Approximate Bayesian computational methods," Statistics and Computing, 22, 1167 – 1180.
- Moral, P. D., Doucet, A., and Jasra, A. (2011), "An adaptive sequential Monte Carlo method for approximate Bayesian computation," *Statistics and Computing*, 22, 1009–1020.
- Pritchard, J. K., Seielstad, M. T., and Perez-Lezaun, A. (1999), "Population Growth of Human Y Chromosomes: A study of Y Chromosome Microsatellites," Molecular Biology and Evolution, 16, 1791 – 1798.
- Schafer, C. M. and Freeman, P. E. (2012), Statistical Challenges in Modern Astronomy V, Springer, chap. 1, Lecture Notes in Statistics, pp. 3 – 19.

- Tavaré, S., Balding, D. J., Griffiths, R., and Donnelly, P. (1997), "Inferring coalescence times from DNA sequence data," *Genetics*, 145, 505 518.
- Turner, B. M. and Zandt, T. V. (2012), "A tutorial on approximate Bayesian computation," Journal of Mathematical Psychology, 56, 69 – 85.
- Weyant, A., Schafer, C., and Wood-Vasey, W. M. (2013), "Likelihood-free cosmological inference with type la supernovae: approximate Bayesian computation for a complete treatment of uncertainty," The Astrophysical Journal, 764, 116.